Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(28): 11263-11272, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959408

RESUMEN

Nontargeted LC/ESI/HRMS aims to detect and identify organic compounds present in the environment without prior knowledge; however, in practice no LC/ESI/HRMS method is capable of detecting all chemicals, and the scope depends on the instrumental conditions. Different experimental conditions, instruments, and methods used for sample preparation and nontargeted LC/ESI/HRMS as well as different workflows for data processing may lead to challenges in communicating the results and sharing data between laboratories as well as reduced reproducibility. One of the reasons is that only a fraction of method performance characteristics can be determined for a nontargeted analysis method due to the lack of prior information and analytical standards of the chemicals present in the sample. The limit of detection (LoD) is one of the most important performance characteristics in target analysis and directly describes the detectability of a chemical. Recently, the identification and quantification in nontargeted LC/ESI/HRMS (e.g., via predicting ionization efficiency, risk scores, and retention times) have significantly improved due to employing machine learning. In this work, we hypothesize that the predicted ionization efficiency could be used to estimate LoD and thereby enable evaluating the suitability of the LC/ESI/HRMS nontargeted method for the detection of suspected chemicals even if analytical standards are lacking. For this, 221 representative compounds were selected from the NORMAN SusDat list (S0), and LoD values were determined by using 4 complementary approaches. The LoD values were correlated to ionization efficiency values predicted with previously trained random forest regression. A robust regression was then used to estimate LoD values of unknown features detected in the nontargeted screening of wastewater samples. These estimated LoD values were used for prioritization of the unknown features. Furthermore, we present LoD values for the NORMAN SusDat list with a reversed-phase C18 LC method.

2.
Anal Chem ; 96(9): 3707-3716, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380899

RESUMEN

Recent advances in high-resolution mass spectrometry (HRMS) have enabled the detection of thousands of chemicals from a single sample, while computational methods have improved the identification and quantification of these chemicals in the absence of reference standards typically required in targeted analysis. However, to determine the presence of chemicals of interest that may pose an overall impact on ecological and human health, prioritization strategies must be used to effectively and efficiently highlight chemicals for further investigation. Prioritization can be based on a chemical's physicochemical properties, structure, exposure, and toxicity, in addition to its regulatory status. This Perspective aims to provide a framework for the strategies used for chemical prioritization that can be implemented to facilitate high-quality research and communication of results. These strategies are categorized as either "online" or "offline" prioritization techniques. Online prioritization techniques trigger the isolation and fragmentation of ions from the low-energy mass spectra in real time, with user-defined parameters. Offline prioritization techniques, in contrast, highlight chemicals of interest after the data has been acquired; detected features can be filtered and ranked based on the relative abundance or the predicted structure, toxicity, and concentration imputed from the tandem mass spectrum (MS2). Here we provide an overview of these prioritization techniques and how they have been successfully implemented and reported in the literature to find chemicals of elevated risk to human and ecological environments. A complete list of software and tools is available from https://nontargetedanalysis.org/.


Asunto(s)
Ambiente , Espectrometría de Masas en Tándem , Humanos
3.
J Chem Inf Model ; 64(8): 3093-3104, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38523265

RESUMEN

The majority of chemicals detected via nontarget liquid chromatography high-resolution mass spectrometry (HRMS) in environmental samples remain unidentified, challenging the capability of existing machine learning models to pinpoint potential endocrine disruptors (EDs). Here, we predict the activity of unidentified chemicals across 12 bioassays related to EDs within the Tox21 10K dataset. Single- and multi-output models, utilizing various machine learning algorithms and molecular fingerprint features as an input, were trained for this purpose. To evaluate the models under near real-world conditions, Monte Carlo sampling was implemented for the first time. This technique enables the use of probabilistic fingerprint features derived from the experimental HRMS data with SIRIUS+CSI:FingerID as an input for models trained on true binary fingerprint features. Depending on the bioassay, the lowest false-positive rate at 90% recall ranged from 0.251 (sr.mmp, mitochondrial membrane potential) to 0.824 (nr.ar, androgen receptor), which is consistent with the trends observed in the models' performances submitted for the Tox21 Data Challenge. These findings underscore the informativeness of fingerprint features that can be compiled from HRMS in predicting the endocrine-disrupting activity. Moreover, an in-depth SHapley Additive exPlanations analysis unveiled the models' ability to pinpoint structural patterns linked to the modes of action of active chemicals. Despite the superior performance of the single-output models compared to that of the multi-output models, the latter's potential cannot be disregarded for similar tasks in the field of in silico toxicology. This study presents a significant advancement in identifying potentially toxic chemicals within complex mixtures without unambiguous identification and effectively reducing the workload for postprocessing by up to 75% in nontarget HRMS.


Asunto(s)
Bioensayo , Disruptores Endocrinos , Disruptores Endocrinos/química , Disruptores Endocrinos/farmacología , Espectrometría de Masas , Aprendizaje Automático , Humanos , Método de Montecarlo
4.
Environ Sci Technol ; 58(5): 2458-2467, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38270113

RESUMEN

High-resolution mass spectrometry (HRMS)-based suspect and nontarget screening has identified a growing number of novel per- and polyfluoroalkyl substances (PFASs) in the environment. However, without analytical standards, the fraction of overall PFAS exposure accounted for by these suspects remains ambiguous. Fortunately, recent developments in ionization efficiency (IE) prediction using machine learning offer the possibility to quantify suspects lacking analytical standards. In the present work, a gradient boosted tree-based model for predicting log IE in negative mode was trained and then validated using 33 PFAS standards. The root-mean-square errors were 0.79 (for the entire test set) and 0.29 (for the 7 PFASs in the test set) log IE units. Thereafter, the model was applied to samples of liver from pilot whales (n = 5; East Greenland) and white beaked dolphins (n = 5, West Greenland; n = 3, Sweden) which contained a significant fraction (up to 70%) of unidentified organofluorine and 35 unquantified suspect PFASs (confidence level 2-4). IE-based quantification reduced the fraction of unidentified extractable organofluorine to 0-27%, demonstrating the utility of the method for closing the fluorine mass balance in the absence of analytical standards.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Animales , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas , Flúor , Mamíferos
5.
Anal Chem ; 95(33): 12329-12338, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37548594

RESUMEN

Nontarget analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is now widely used to detect pollutants in the environment. Shifting away from targeted methods has led to detection of previously unseen chemicals, and assessing the risk posed by these newly detected chemicals is an important challenge. Assessing exposure and toxicity of chemicals detected with nontarget HRMS is highly dependent on the knowledge of the structure of the chemical. However, the majority of features detected in nontarget screening remain unidentified and therefore the risk assessment with conventional tools is hampered. Here, we developed MS2Quant, a machine learning model that enables prediction of concentration from fragmentation (MS2) spectra of detected, but unidentified chemicals. MS2Quant is an xgbTree algorithm-based regression model developed using ionization efficiency data for 1191 unique chemicals that spans 8 orders of magnitude. The ionization efficiency values are predicted from structural fingerprints that can be computed from the SMILES notation of the identified chemicals or from MS2 spectra of unidentified chemicals using SIRIUS+CSI:FingerID software. The root mean square errors of the training and test sets were 0.55 (3.5×) and 0.80 (6.3×) log-units, respectively. In comparison, ionization efficiency prediction approaches that depend on assigning an unequivocal structure typically yield errors from 2× to 6×. The MS2Quant quantification model was validated on a set of 39 environmental pollutants and resulted in a mean prediction error of 7.4×, a geometric mean of 4.5×, and a median of 4.0×. For comparison, a model based on PaDEL descriptors that depends on unequivocal structural assignment was developed using the same dataset. The latter approach yielded a comparable mean prediction error of 9.5×, a geometric mean of 5.6×, and a median of 5.2× on the validation set chemicals when the top structural assignment was used as input. This confirms that MS2Quant enables to extract exposure information for unidentified chemicals which, although detected, have thus far been disregarded due to lack of accurate tools for quantification. The MS2Quant model is available as an R-package in GitHub for improving discovery and monitoring of potentially hazardous environmental pollutants with nontarget screening.


Asunto(s)
Contaminantes Ambientales , Espectrometría de Masas , Cromatografía Liquida , Programas Informáticos , Algoritmos
6.
Anal Bioanal Chem ; 415(21): 5247-5259, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37452839

RESUMEN

Non-target screening with LC/IMS/HRMS is increasingly employed for detecting and identifying the structure of potentially hazardous chemicals in the environment and food. Structural assignment relies on a combination of multidimensional instrumental methods and computational methods. The candidate structures are often isomeric, and unfortunately, assigning the correct structure among a number of isomeric candidate structures still is a key challenge both instrumentally and computationally. While practicing non-target screening, it is usually impossible to evaluate separately the limitations arising from (1) the inability of LC/IMS/HRMS to resolve the isomeric candidate structures and (2) the uncertainty of in silico methods in predicting the analytical information of isomeric candidate structures due to the lack of analytical standards for all candidate structures. Here we evaluate the feasibility of structural assignment of isomeric candidate structures based on in silico-predicted retention time and database collision cross-section (CCS) values as well as based on matching the empirical analytical properties of the detected feature with those of the analytical standards. For this, we investigated 14 candidate structures corresponding to five features detected with LC/HRMS in a spiked surface water sample. Considering the predicted retention times and database CCS values with the accompanying uncertainty, only one of the isomeric candidate structures could be deemed as unlikely; therefore, the annotation of the LC/IMS/HRMS features remained ambiguous. To further investigate if unequivocal annotation is possible via analytical standards, the reversed-phase LC retention times and low- and high-resolution ion mobility spectrometry separation, as well as high-resolution MS2 spectra of analytical standards were studied. Reversed-phase LC separated the highest number of candidate structures while low-resolution ion mobility and high-resolution MS2 spectra provided little means for pinpointing the correct structure among the isomeric candidate structures even if analytical standards were available for comparison. Furthermore, the question arises which prediction accuracy is required from the in silico methods to par the analytical separation. Based on the experimental data of the isomeric candidate structures studied here and previously published in the literature (516 retention time and 569 CCS values), we estimate that to reduce the candidate list by 95% of the structures, the confidence interval of the predicted retention times would need to decrease to below 0.05 min for a 15-min gradient while that of CCS values would need to decrease to 0.15%. Hereby, we set a clear goal to the in silico methods for retention time and CCS prediction.

7.
Anal Chem ; 94(30): 10601-10609, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35861491

RESUMEN

The structural annotation of isomeric metabolites remains a key challenge in untargeted electrospray ionization/high-resolution mass spectrometry (ESI/HRMS) metabolomic analysis. Many metabolites are polyfunctional compounds that may form protomers in electrospray ionization sources and therefore yield multiple peaks in ion mobility spectra. Protomer formation is strongly structure-specific. Here, we explore the possibility of using protomer formation for structural elucidation in metabolomics on the example of caffeine, its eight metabolites, and structurally related compounds. It is observed that two-thirds of the studied compounds formed high- and low-mobility species in high-resolution ion mobility. Structures in which proton hopping was hindered by a methyl group at the purine ring nitrogen (position 3) yielded structure-indicative fragments with collision-induced dissociation (CID) for high- and low-mobility ions. For compounds where such a methyl group was not present, a gas-phase equilibrium could be observed for tautomeric species with two-dimensional ion mobility. We show that the protomer formation and the gas-phase properties of the protomers can be related to the structure of caffeine metabolites and facilitate the identification of the structural isomers.


Asunto(s)
Cafeína , Espectrometría de Masa por Ionización de Electrospray , Iones , Isomerismo , Subunidades de Proteína , Protones , Espectrometría de Masa por Ionización de Electrospray/métodos
8.
Environ Sci Technol ; 56(22): 15508-15517, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36269851

RESUMEN

To achieve water quality objectives of the zero pollution action plan in Europe, rapid methods are needed to identify the presence of toxic substances in complex water samples. However, only a small fraction of chemicals detected with nontarget high-resolution mass spectrometry can be identified, and fewer have ecotoxicological data available. We hypothesized that ecotoxicological data could be predicted for unknown molecular features in data-rich high-resolution mass spectrometry (HRMS) spectra, thereby circumventing time-consuming steps of molecular identification and rapidly flagging molecules of potentially high toxicity in complex samples. Here, we present MS2Tox, a machine learning method, to predict the toxicity of unidentified chemicals based on high-resolution accurate mass tandem mass spectra (MS2). The MS2Tox model for fish toxicity was trained and tested on 647 lethal concentration (LC50) values from the CompTox database and validated for 219 chemicals and 420 MS2 spectra from MassBank. The root mean square error (RMSE) of MS2Tox predictions was below 0.89 log-mM, while the experimental repeatability of LC50 values in CompTox was 0.44 log-mM. MS2Tox allowed accurate prediction of fish LC50 values for 22 chemicals detected in water samples, and empirical evidence suggested the right directionality for another 68 chemicals. Moreover, by incorporating structural information, e.g., the presence of carbonyl-benzene, amide moieties, or hydroxyl groups, MS2Tox outperforms baseline models that use only the exact mass or log KOW.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas , Peces , Ecotoxicología , Aprendizaje Automático
9.
Environ Sci Technol ; 56(17): 12460-12472, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994059

RESUMEN

Lower chlorinated polychlorinated biphenyls (LC-PCBs) and their metabolites make up a class of environmental pollutants implicated in a range of adverse outcomes in humans; however, the metabolism of LC-PCBs in human models has received little attention. Here we characterize the metabolism of PCB 2 (3-chlorobiphenyl), an environmentally relevant LC-PCB congener, in HepG2 cells with in silico prediction and nontarget high-resolution mass spectrometry. Twenty PCB 2 metabolites belonging to 13 metabolite classes, including five dechlorinated metabolite classes, were identified in the cell culture media from HepG2 cells exposed for 24 h to 10 µM or 3.6 nM PCB 2. The PCB 2 metabolite profiles differed from the monochlorinated metabolite profiles identified in samples from an earlier study with PCB 11 (3,3'-dichlorobiphenyl) under identical experimental conditions. A dechlorinated dihydroxylated metabolite was also detected in human liver microsomal incubations with monohydroxylated PCB 2 metabolites but not PCB 2. These findings demonstrate that the metabolism of LC-PCBs in human-relevant models involves the formation of dechlorination products. In addition, untargeted metabolomic analyses revealed an altered bile acid biosynthesis in HepG2 cells. Our results indicate the need to study the disposition and toxicity of complex PCB 2 metabolites, including novel dechlorinated metabolites, in human-relevant models.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Compuestos de Bifenilo , Línea Celular , Contaminantes Ambientales/metabolismo , Humanos , Hidroxilación , Bifenilos Policlorados/metabolismo
10.
Anal Bioanal Chem ; 414(25): 7451-7460, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35507099

RESUMEN

Hydroxylated PCBs are an important class of metabolites of the widely distributed environmental contaminants polychlorinated biphenyls (PCBs). However, the absence of authentic standards is often a limitation when subject to detection, identification, and quantification. Recently, new strategies to quantify compounds detected with non-targeted LC/ESI/HRMS based on predicted ionization efficiency values have emerged. Here, we evaluate the impact of chemical space coverage and sample matrix on the accuracy of ionization efficiency-based quantification. We show that extending the chemical space of interest is crucial in improving the performance of quantification. Therefore, we extend the ionization efficiency-based quantification approach to hydroxylated PCBs in serum samples with a retraining approach that involves 14 OH-PCBs and validate it with an additional four OH-PCBs. The predicted and measured ionization efficiency values of the OH-PCBs agreed within the mean error of 2.1 × and enabled quantification with the mean error of 4.4 × or better. We observed that the error mostly arose from the ionization efficiency predictions and the impact of matrix effects was of less importance, varying from 37 to 165%. The results show that there is potential for predictive machine learning models for quantification even in very complex matrices such as serum. Further, retraining the already developed models provides a timely and cost-effective solution for extending the chemical space of the application area.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Ambientales/metabolismo , Humanos , Hidroxilación , Bifenilos Policlorados/análisis , Estándares de Referencia
11.
Anal Bioanal Chem ; 414(17): 4919-4933, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35699740

RESUMEN

Non-targeted analysis (NTA) methods are widely used for chemical discovery but seldom employed for quantitation due to a lack of robust methods to estimate chemical concentrations with confidence limits. Herein, we present and evaluate new statistical methods for quantitative NTA (qNTA) using high-resolution mass spectrometry (HRMS) data from EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Experimental intensities of ENTACT analytes were observed at multiple concentrations using a semi-automated NTA workflow. Chemical concentrations and corresponding confidence limits were first estimated using traditional calibration curves. Two qNTA estimation methods were then implemented using experimental response factor (RF) data (where RF = intensity/concentration). The bounded response factor method used a non-parametric bootstrap procedure to estimate select quantiles of training set RF distributions. Quantile estimates then were applied to test set HRMS intensities to inversely estimate concentrations with confidence limits. The ionization efficiency estimation method restricted the distribution of likely RFs for each analyte using ionization efficiency predictions. Given the intended future use for chemical risk characterization, predicted upper confidence limits (protective values) were compared to known chemical concentrations. Using traditional calibration curves, 95% of upper confidence limits were within ~tenfold of the true concentrations. The error increased to ~60-fold (ESI+) and ~120-fold (ESI-) for the ionization efficiency estimation method and to ~150-fold (ESI+) and ~130-fold (ESI-) for the bounded response factor method. This work demonstrates successful implementation of confidence limit estimation strategies to support qNTA studies and marks a crucial step towards translating NTA data in a risk-based context.


Asunto(s)
Incertidumbre , Calibración , Espectrometría de Masas/métodos
12.
Molecules ; 27(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35164283

RESUMEN

LC/ESI/HRMS is increasingly employed for monitoring chemical pollutants in water samples, with non-targeted analysis becoming more common. Unfortunately, due to the lack of analytical standards, non-targeted analysis is mostly qualitative. To remedy this, models have been developed to evaluate the response of compounds from their structure, which can then be used for quantification in non-targeted analysis. Still, these models rely on tentatively known structures while for most detected compounds, a list of structural candidates, or sometimes only exact mass and retention time are identified. In this study, a quantification approach was developed, where LC/ESI/HRMS descriptors are used for quantification of compounds even if the structure is unknown. The approach was developed based on 92 compounds analyzed in parallel in both positive and negative ESI mode with mobile phases at pH 2.7, 8.0, and 10.0. The developed approach was compared with two baseline approaches- one assuming equal response factors for all compounds and one using the response factor of the closest eluting standard. The former gave a mean prediction error of a factor of 29, while the latter gave a mean prediction error of a factor of 1300. In the machine learning-based quantification approach developed here, the corresponding prediction error was a factor of 10. Furthermore, the approach was validated by analyzing two blind samples containing 48 compounds spiked into tap water and ultrapure water. The obtained mean prediction error was lower than a factor of 6.0 for both samples. The errors were found to be comparable to approaches using structural information.

13.
Rapid Commun Mass Spectrom ; 35(21): e9178, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34355441

RESUMEN

RATIONALE: The first comprehensive quantitative scale of the efficiency of electrospray ionization (ESI) in the positive mode by monoprotonation, containing 62 compounds, was published in 2010. Several trends were found between the compound structure and ionization efficiency (IE) but, possibly because of the limited diversity of the compounds, some questions remained. This work undertakes to align the new data with the originally published IE scale and carry out statistical analysis of the resulting more extensive and diverse data set to derive more grounded relationships and offer a possibility of predicting logIE values. METHODS: Recently, several new IE studies with numerous compounds have been conducted. In several of them, more detailed investigations of the influence of compound structure, solvent properties, or instrument settings have been conducted. IE data from these studies and results from this work were combined, and the multilinear regression method was applied to relate IE to various compound parameters. RESULTS: The most comprehensive IE scale available, containing 334 compounds of highly diverse chemical nature and spanning 6 orders of magnitude of IE, has been compiled. Several useful trends were revealed. CONCLUSIONS: The ESI ionization efficiency of a compound by protonation is mainly affected by three factors: basicity (expressed by pKaH in water), molecular size (expressed by molar volume or surface area), and hydrophobicity of the ion (expressed by charge delocalization in the ion or its partition coefficient between a water-acetonitrile mixture and hexane). The presented models can be used for tentative prediction of logIE of new compounds (under the used conditions) from parameters that can be computed using commercially available software. The root mean square error of prediction is in the range of 0.7-0.8 log units.

14.
Anal Bioanal Chem ; 413(6): 1549-1559, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33506334

RESUMEN

A wide range of micropollutants can be monitored with non-targeted screening; however, the quantification of the newly discovered compounds is challenging. Transformation products (TPs) are especially problematic because analytical standards are rarely available. Here, we compared three quantification approaches for non-target compounds that do not require the availability of analytical standards. The comparison is based on a unique set of concentration data for 341 compounds, mainly pesticides, pharmaceuticals, and their TPs in 31 groundwater samples from Switzerland. The best accuracy was observed with the predicted ionization efficiency-based quantification, the mean error of concentration prediction for the groundwater samples was a factor of 1.8, and all of the 74 micropollutants detected in the groundwater were quantified with an error less than a factor of 10. The quantification of TPs with the parent compounds had significantly lower accuracy (mean error of a factor of 3.8) and could only be applied to a fraction of the detected compounds, while the mean performance (mean error of a factor of 3.2) of the closest eluting standard approach was similar to the parent compound approach.

15.
Molecules ; 26(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207787

RESUMEN

Non-targeted screening (NTS) with reversed phase liquid chromatography electrospray ionization high resolution mass spectrometry (LC/ESI/HRMS) is increasingly employed as an alternative to targeted analysis; however, it is not possible to quantify all compounds found in a sample with analytical standards. As an alternative, semi-quantification strategies are, or at least should be, used to estimate the concentrations of the unknown compounds before final decision making. All steps in the analytical chain, from sample preparation to ionization conditions and data processing can influence the signals obtained, and thus the estimated concentrations. Therefore, each step needs to be considered carefully. Generally, less is more when it comes to choosing sample preparation as well as chromatographic and ionization conditions in NTS. By combining the positive and negative ionization mode, the performance of NTS can be improved, since different compounds ionize better in one or the other mode. Furthermore, NTS gives opportunities for retrospective analysis. In this tutorial, strategies for semi-quantification are described, sources potentially decreasing the signals are identified and possibilities to improve NTS are discussed. Additionally, examples of retrospective analysis are presented. Finally, we present a checklist for carrying out semi-quantitative NTS.

16.
Anal Chem ; 92(7): 4691-4699, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32134258

RESUMEN

This Feature aims at giving an overview of different possibilities for quantitatively comparing the results obtained from LC-HRMS-based nontargeted analysis. More specifically, quantification via structurally similar internal standards, different isotope labeling strategies, radiolabeling, and predicted ionization efficiencies are reviewed.

17.
Rapid Commun Mass Spectrom ; 33 Suppl 3: 54-63, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29943466

RESUMEN

Combining high-resolution mass spectrometry (HRMS) with liquid chromatography (LC) has considerably increased the capability of analytical chemistry. Among others, it has stimulated the growth of the non-target analysis, which aims at identifying compounds without their preceding selection. This approach is already widely applied in various fields, such as metabolomics, proteomics, etc. The applicability of LC/HRMS-based non-target analysis in environmental analyses, such as water studies, would be beneficial for understanding the environmental fate of polar pollutants and evaluating the health risks exposed by the new emerging contaminants. During the last five to seven years the use of LC/HRMS-based non-target analysis has grown rapidly. However, routine non-target analysis is still uncommon for most environmental monitoring agencies and environmental scientists. The main reasons are the complicated data processing and the inability to provide quantitative information about identified compounds. The latter shortcoming follows from the lack of standard substances, considered so far as the soul of each quantitative analysis for the newly discovered pollutants. To overcome this, non-target analyses could be combined with semi-quantitation. This Perspective aims at describing the current methods for non-target analysis, the possibilities and challenges of standard substance-free semi-quantitative analysis, and proposes tools to join these two fields together.

18.
Rapid Commun Mass Spectrom ; 33(23): 1834-1843, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31381213

RESUMEN

RATIONALE: The choice of mobile phase components and optimal ion source, mainly electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), is a crucial part in liquid chromatography/mass spectrometry (LC/MS) method development to achieve higher sensitivity and lower detection limits. In this study we demonstrate how to rigorously solve these questions by using ionization efficiency scales. METHODS: Four ionization efficiency scales are used: recorded with both APCI and ESI sources and using both methanol- and acetonitrile-containing mobile phases. Each scale contains altogether more than 50 compounds. In addition, measurements with a chromatographic column were also performed. RESULTS: We observed a correlation between calibration graph slopes under LC conditions and logIE values in ESI (but not APCI) thereby validating the use of logIE values for choosing the ion source. Most of the studied compounds preferred ESI as an ion source and methanol as mobile organic phase. APCI remains the ion source of choice for polycyclic aromatic hydrocarbons. For APCI, both acetonitrile and methanol provide similar ionization efficiencies with few exceptions. CONCLUSIONS: Overall the results of this work give a concise guideline for practitioners in choosing an ion source for LC/MS analysis on the basis of the chemical nature of the analytes.

19.
Anal Bioanal Chem ; 411(16): 3533-3542, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31025182

RESUMEN

Choosing an appropriate ion source is a crucial step in liquid chromatography mass spectrometry (LC/MS) method development. In this paper, we compare four ion sources for LC/MS analysis of 40 pesticides in tomato and garlic matrices. We compare electrospray ionisation (ESI) source, thermally focused/heated electrospray (HESI), atmospheric pressure photoionisation (APPI) source with and without dopant, and multimode source in ESI mode, atmospheric pressure chemical ionisation (APCI) mode, and combined mode using both ESI and APCI, i.e. altogether seven different ionisation modes. The lowest limits of detection (LoDs) were obtained by ESI and HESI. Widest linear ranges were observed with the conventional ESI source without heated nebuliser gas. In comparison to HESI, ESI source was significantly less affected by matrix effect. APPI ranked second (after ESI) by not being influenced by matrix effect; therefore, it would be a good alternative to ESI if low LoDs are not required. Graphical abstract.

20.
Angew Chem Int Ed Engl ; 58(33): 11324-11328, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31173448

RESUMEN

A rapid screening method based on traveling-wave ion-mobility spectrometry (TWIMS) combined with tandem mass spectrometry provides insight into the topology of interlocked and knotted molecules, even when they exist in complex mixtures, such as interconverting dynamic combinatorial libraries. A TWIMS characterization of structure-indicative fragments generated by collision-induced dissociation (CID) together with a floppiness parameter defined based on parent- and fragment-ion arrival times provide a straightforward topology identification. To demonstrate its broad applicability, this approach is applied here to six Hopf and two Solomon links, a trefoil knot, and a [3]catenate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA