Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063704

RESUMEN

Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL-1) and only weakly sensitive to their mixtures, i.e., extracts and extracts' fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.


Asunto(s)
Planta Carnívora/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/efectos adversos , Antibacterianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Naftoquinonas/efectos adversos , Naftoquinonas/química , Naftoquinonas/farmacología , Extractos Vegetales/química , Pseudomonas aeruginosa/patogenicidad , Metabolismo Secundario/efectos de los fármacos , Plata/química , Espectrofotometría Ultravioleta
2.
Molecules ; 26(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198510

RESUMEN

Antimicrobial resistance is a major healthcare threat globally. Xanthines, including caffeine and pentoxifylline, are attractive candidates for drug repurposing, given their well-established safety and pharmacological profiles. This study aimed to analyze potential interactions between xanthines and aromatic antibiotics (i.e., tetracycline and ciprofloxacin), and their impact on antibiotic antibacterial activity. UV-vis spectroscopy, statistical-thermodynamical modeling, and isothermal titration calorimetry were used to quantitatively evaluate xanthine-antibiotic interactions. The antibacterial profiles of xanthines, and xanthine-antibiotic mixtures, towards important human pathogens Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Enterobacter cloacae were examined. Caffeine and pentoxifylline directly interact with ciprofloxacin and tetracycline, with neighborhood association constant values of 15.8-45.6 M-1 and enthalpy change values up to -4 kJ·M-1. Caffeine, used in mixtures with tested antibiotics, enhanced their antibacterial activity in most pathogens tested. However, antagonistic effects of caffeine were also observed, but only with ciprofloxacin toward Gram-positive pathogens. Xanthines interact with aromatic antibiotics at the molecular and in vitro antibacterial activity level. Given considerable exposure to caffeine and pentoxifylline, these interactions might be relevant for the effectiveness of antibacterial pharmacotherapy, and may help to identify optimal treatment regimens in the era of multidrug resistance.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Cafeína/farmacología , Compuestos Heterocíclicos/química , Pentoxifilina/farmacología , Antibacterianos/química , Bacterias/crecimiento & desarrollo , Cafeína/química , Estimulantes del Sistema Nervioso Central/química , Estimulantes del Sistema Nervioso Central/farmacología , Interacciones Farmacológicas , Pruebas de Sensibilidad Microbiana , Pentoxifilina/química , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología
3.
Biomed Pharmacother ; 170: 116023, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104417

RESUMEN

Changes in immunocompetent cells influence the course of diabetes mellitus and contribute to its complications. Thus, correction of diabetes-induced immune system disorders is vital for normalizing the state of the organism. Red wine polyphenols due to their biological activities could be considered a potential remedy for correcting diabetes. The study aimed to evaluate the antimicrobial potential and the influence of red wine polyphenols on immune system in streptozotocin-induced diabetes. We studied immunological parameters, i.e. quantity of white blood cells in peripheral blood and peritoneal macrophages, the bactericidal activity of phagocytes of blood, the activity of myeloperoxidase, and the level of cationic proteins in these cells after the administration of the polyphenol-rich red wine concentrate (PC concentrate) of known composition, obtained from Ukrainian wine, for 14th day to rats with streptozotocin-induced diabetes. The Minimal Bactericidal Concentration (MBC) of the PC concentrate was determined with the Broth Microdilution method. The PC concentrate normalized the quantity and functional activity of peripheral blood neutrophils and peritoneal macrophages, and decreased the quantity of lymphocytes under diabetes, as well as possessed the antibacterial activity against Staphylococcus aureus and Escherichia coli. Our results indicate the significant biological potential of the PC concentrate and its therapeutic relevance to correct diabetes-induced disorders.


Asunto(s)
Diabetes Mellitus Experimental , Vino , Ratas , Animales , Polifenoles/farmacología , Polifenoles/uso terapéutico , Vino/análisis , Estreptozocina , Escherichia coli , Diabetes Mellitus Experimental/tratamiento farmacológico , Antibacterianos/farmacología , Flavonoides/farmacología
4.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890171

RESUMEN

With the rapid and continuous emergence of antimicrobial resistance, bacterial infections became a significant global healthcare concern. One of the proposed strategies to combat multidrug-resistant pathogens is to use additional compounds, such as natural biologically active substances, as adjuvants for existing antibiotics. In this study, we investigated the potential of caffeine, the widely consumed alkaloid, to modulate the antibacterial effects of antibiotics commonly used in clinical practice. We used disc diffusion assay to evaluate the effects of caffeine on 40 antibiotics in two Staphylococcus aureus strains (methicillin-resistant and methicillin-sensitive). Based on the results of this step, we selected five antibiotics for which the greatest caffeine-induced improvements in antibacterial activity were observed, and further analyzed their interactions with caffeine using a checkerboard approach. Caffeine at concentrations of 250 µg/mL or higher halved the MIC values of ticarcillin, cefepime, gentamycin, azithromycin, and novobiocin for all gram-negative species investigated (Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii). At the highest caffeine concentrations tested (up to 16 mg/mL), decreases in MIC values were 8- to 16-fold. The obtained results prove that caffeine modulates the activity of structurally diverse antibiotics, with the most promising synergistic effects observed for cefepime and azithromycin toward gram-negative pathogens.

5.
Front Plant Sci ; 11: 580330, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983224

RESUMEN

Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant (Solanum tuberosum) and an alternative (S. dulcamara) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.

6.
Sci Rep ; 9(1): 4987, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899037

RESUMEN

One of the greatest challenges of modern medicine is to find cheaper and easier ways to produce transporters for biologically active substances, which will provide selective and efficient drug delivery to the target cells, while causing low toxicity towards healthy cells. Currently, metal-based nanoparticles are considered a successful and viable solution to this problem. In this work, we propose the use of novel synthesis method of platinum nanoparticles (PtNPs) connected with their precise biophysical characterization and assessment of their potential toxicity. To work as an efficient nanodelivery platform, nanoparticles should interact with the desired active compounds spontaneously and non-covalently. We investigated possible direct interactions of PtNPs with ICR-191, a model acridine mutagen with well-established biophysical properties and mutagenic activity, by Dynamic Light Scattering, fluorescence spectroscopy, and Isothermal Titration Calorimetry. Moreover, to determine the biological activity of ICR-191-PtNPs aggregates, we employed Ames mutagenicity test, eukaryotic cell line analysis and toxicity test against the model organism Caenorhabditis elegans. PtNPs' interesting physicochemical properties associated to the lack of toxicity in a tested range of concentrations, as well as their ability to modulate ICR-191 biological activity, suggest that these particles successfully work as potential delivery platforms for different biologically active substances.


Asunto(s)
Aminacrina/análogos & derivados , Sistemas de Liberación de Medicamentos/efectos adversos , Nanopartículas del Metal/química , Compuestos de Mostaza Nitrogenada/química , Platino (Metal)/química , Aminacrina/síntesis química , Aminacrina/química , Aminacrina/uso terapéutico , Fenómenos Biofísicos , Humanos , Nanopartículas del Metal/uso terapéutico , Mutágenos/química , Mutágenos/uso terapéutico , Mutágenos/toxicidad , Compuestos de Mostaza Nitrogenada/síntesis química , Compuestos de Mostaza Nitrogenada/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA