Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Neurobiol ; 55(3): 2362-2383, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28357806

RESUMEN

Although benzophenone-3 (BP-3) has frequently been reported to play a role in endocrine disruption, there is insufficient data regarding the impact of BP-3 on the nervous system, including its possible adverse effects on the developing brain. Our study demonstrated that BP-3 caused neurotoxicity and activated apoptosis via an intrinsic pathway involving the loss of mitochondrial membrane potential and the activation of caspases-9 and -3 and kinases p38/MAPK and Gsk3ß. These biochemical alterations were accompanied by ROS production, increased apoptotic body formation and impaired cell survival, and by an upregulation of the genes involved in apoptosis. The BP-3-induced effects were tissue-specific and age-dependent with the most pronounced effects observed in neocortical cells at 7 days in vitro. BP-3 changed the messenger RNA (mRNA) expression levels of Erα, Erß, Gpr30, and Pparγ in a time-dependent manner. At 3 h of exposure, BP-3 downregulated estrogen receptor mRNAs but upregulated Pparγ mRNA. After prolonged exposures, BP-3 downregulated the receptor mRNAs except for Erß mRNA that was upregulated. The BP-3-induced patterns of mRNA expression measured at 6 and 24 h of exposure reflected alterations in the protein levels of the receptors and paralleled their immunofluorescent labeling. Erα and Pparγ agonists diminished, but Erß and Gpr30 agonists stimulated the BP-3-induced apoptotic and neurotoxic effects. Receptor antagonists caused the opposite effects, except for ICI 182,780. This is in line with a substantial reduction in the effects of BP-3 in cells with siRNA-silenced Erß/Gpr30 and the maintenance of BP-3 effects in Erα- and Pparγ siRNA-transfected cells. We showed for the first time that BP-3-affected mRNA and protein expression levels of Erα, Erß, Gpr30, and Pparγ, paralleled BP-3-induced apoptosis and neurotoxicity. Therefore, we suggest that BP-3-evoked apoptosis of neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erß/Gpr30 signaling.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzofenonas/toxicidad , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , PPAR gamma/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Protectores Solares/toxicidad , Animales , Apoptosis/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/agonistas , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , PPAR gamma/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
2.
Mol Neurobiol ; 53(8): 5591-606, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26476840

RESUMEN

The neuroprotective potential of 3,3'-diindolylmethane (DIM), which is a selective aryl hydrocarbon receptor modulator, has recently been shown in cellular and animal models of Parkinson's disease and lipopolysaccharide-induced inflammation. However, there are no data concerning the protective capacity and mechanisms of DIM action in neuronal cells exposed to hypoxia. The aim of the present study was to investigate the neuroprotective potential of DIM against the hypoxia-induced damage in mouse hippocampal cells in primary cultures, with a particular focus on DIM interactions with the aryl hydrocarbon receptor (AhR), its nuclear translocator ARNT, and estrogen receptor ß (ERß). In the present study, 18 h of hypoxia induced apoptotic processes, in terms of the mitochondrial membrane potential, activation of caspase-3, and fragmentation of cell nuclei. These effects were accompanied by substantial lactate dehydrogenase release and neuronal cell death. The results of the present study demonstrated strong neuroprotective and anti-apoptotic actions of DIM in hippocampal cells exposed to hypoxia. In addition, DIM decreased the Ahr and Arnt mRNA expression and stimulated Erß mRNA expression level. DIM-induced mRNA alterations were mirrored by changes in protein levels, except for ERß, as detected by ELISA, Western blotting, and immunofluorescence labeling. We also demonstrated that DIM decreased the expression of AhR-regulated CYP1A1. Using specific siRNAs, we provided evidence that impairment of AhR and ARNT, but not ERß plays a key role in the neuroprotective action of DIM against hypoxia-induced cell damage. This study may have implication for identifying new agents that could protect neurons against hypoxia by targeting AhR/ARNT signaling.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Indoles/farmacología , Neuronas/citología , Neuronas/metabolismo , Neuroprotección/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Caspasa 3/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromo P-450 CYP1A1/metabolismo , Activación Enzimática/efectos de los fármacos , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/metabolismo , Silenciador del Gen/efectos de los fármacos , Hipocampo/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/genética , Coloración y Etiquetado
3.
J Steroid Biochem Mol Biol ; 156: 43-52, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26643981

RESUMEN

In the present study, we investigated the role of the retinoid X receptor (RXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), in the apoptotic and toxic effects of nonylphenol in mouse primary neuronal cell cultures. Our study demonstrated that nonylphenol activated caspase-3 and induced lactate dehydrogenase (LDH) release in hippocampal cells, which was accompanied by an increase in the mRNA expression and protein levels of RXRα, PXR and CAR. Nonylphenol stimulated Rxra, Pxr, and Car mRNA expression. These effects were followed by increase in the protein levels of particular receptors. Immunofluorescence labeling revealed the cellular distribution of RXRα, PXR and CAR in hippocampal neurons in response to nonylphenol, shortening of neurites and cytoplasmic shrinking, as indicated by MAP2 staining. It also showed NP-induced translocation of receptor-specific immunofluorescence from cytoplasm to the nucleus. The use of specific siRNAs demonstrated that Rxra-, Pxr-, and Car-siRNA-transfected cells were less vulnerable to nonylphenol-induced activation of caspase-3 and LDH, thus confirming the key involvement of RXRα/PXR/CAR signaling pathways in the apoptotic and neurotoxic actions of nonylphenol. These new data give prospects for the targeting xenobiotic nuclear receptors to protect the developing nervous system against endocrine disrupting chemicals.


Asunto(s)
Apoptosis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Fenoles/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Receptores X Retinoide/metabolismo , Animales , Células Cultivadas , Receptor de Androstano Constitutivo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Neuronas/metabolismo , Neuronas/patología , Receptor X de Pregnano , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Esteroides/genética , Receptores X Retinoide/genética , Transducción de Señal , Regulación hacia Arriba/efectos de los fármacos
4.
Neurotox Res ; 29(1): 155-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26563996

RESUMEN

Dichlorodiphenyldichloroethylene (DDE) is a primary environmental and metabolic degradation product of the pesticide dichlorodiphenyltrichloroethane (DDT). It is one of the most toxic compounds belonging to organochlorines. DDE has never been commercially produced; however, the parent pesticide DDT is still used in some developing countries for disease-vector control of malaria. DDT and DDE remain in the environment because these chemicals are resistant to degradation and bioaccumulate in the food chain. Little is known, however, about DDE toxicity during the early stages of neural development. The results of the present study demonstrate that DDE induced a caspase-3-dependent apoptosis and caused the global DNA hypomethylation in mouse embryonic neuronal cells. This study also provided evidence for DDE-isomer-non-specific alterations of retinoid X receptor α (RXRα)- and retinoid X receptor ß (RXRß)-mediated intracellular signaling, including changes in the levels of the receptor mRNAs and changes in the protein levels of the receptors. DDE-induced stimulation of RXRα and RXRß was verified using selective antagonist and specific siRNAs. Co-localization of RXRα and RXRß was demonstrated using confocal microscopy. The apoptotic action of DDE was supported at the cellular level through Hoechst 33342 and calcein AM staining experiments. In conclusion, the results of the present study demonstrated that the stimulation of RXRα- and RXRß-mediated intracellular signaling plays an important role in the propagation of DDE-induced apoptosis during early stages of neural development.


Asunto(s)
Diclorodifenil Dicloroetileno/farmacología , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología , Receptores X Retinoide/metabolismo , Animales , Apoptosis , Benzoatos/farmacología , Compuestos de Bifenilo/farmacología , Encéfalo/citología , Caspasa 3/metabolismo , Células Cultivadas , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Fluoresceínas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores X Retinoide/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
5.
J Steroid Biochem Mol Biol ; 146: 26-37, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24846829

RESUMEN

Raloxifene is the selective estrogen receptor modulator (SERM) currently used in clinical practice to activate estrogen receptors (ERs) in bone tissue and to antagonise ERs in breast and uterine cancers. Little is known, however, about mechanisms of action of raloxifene on hypoxia-induced neuronal cell damage. The aim of the present study was to investigate the neuroprotective potential of raloxifene against hypoxia-induced damage of mouse hippocampal cells in primary cultures, with a particular focus on raloxifene interactions with the classical nuclear ERs (ERα, ERß) and the recently identified membrane ER G-protein-coupled receptor 30 (GPR30). In this study, 18 h of hypoxia increased hypoxia inducible factor 1 alpha (Hif1α) mRNA expression and induced apoptotic processes, such as loss of the mitochondrial membrane potential, activation of caspase-3 and fragmentation of cell nuclei based on Hoechst 33342 staining. These effects were accompanied by reduced ATPase and intracellular esterase activities as well as substantial lactate dehydrogenase (LDH) release from cells exposed to hypoxia. Our study demonstrated strong neuroprotective and anti-apoptotic caspase-3-independent actions of raloxifene in hippocampal cells exposed to hypoxia. Raloxifene also inhibited the hypoxia-induced decrease in Erα mRNA expression and attenuated the hypoxia-induced rise in Erß and Gpr30 mRNA expression levels. Impact of raloxifene on hypoxia-affected Erα mRNA was mirrored by fluctuations in the protein level of the receptor as demonstrated by Western blot and immunofluorescent labelling. Raloxifene-induced changes in Erß mRNA expression level were in parallel with ERß immunofluorescent labeling. However, changes in Gpr30 mRNA level were not reflected by changes in the protein levels measured either by ELISA, Western blot or immunofluorescent staining at 24h post-treatment. Using specific siRNAs, we provided evidence for a key involvement of ERα, but not ERß or GPR30 in neuroprotective action of raloxifene against hypoxia-induced cell damage. This study may have implications for the treatment or prevention of hypoxic brain injury and the administration of current or new generations of SERMs specific to ERα. This article is part of a Special Issue entitled "Sex steroids and brain disorders".


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Hipocampo/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Clorhidrato de Raloxifeno/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Caspasa 3/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia/genética , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Receptores de Estrógenos , Receptores Acoplados a Proteínas G/genética , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transducción de Señal/efectos de los fármacos
6.
J Steroid Biochem Mol Biol ; 144 Pt B: 334-47, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25092517

RESUMEN

4-para-Nonylphenol (NP) is a non-ionic surfactant that has widespread and uncontrolled distribution in the environment. Little is known, however, about its actions on neuronal cells during critical developmental periods. This study aimed to investigate the mechanisms underlying the apoptotic and toxic actions of NP on mouse embryonic neuronal cells and the possible interactions of NP with estrogen receptor (ER)- and retinoid X receptor (RXR)-mediated intracellular signaling. Treatment of mouse hippocampal neuronal cell cultures with NP (5 and 10µM) induced apoptotic and neurotoxic effects. The 2 and 7 day-old mouse hippocampal cultures were vulnerable to 5 and 10µM NP, whereas 12 day-old cultures responded only to the highest concentration of NP, thus suggesting an age-dependent action of the chemical on neuronal cells. The use of specific inhibitors did not support the involvement of calpains in NP-induced apoptosis, but indicated caspase-8- and caspase-9-dependent effects of NP. Specific ER antagonists MPP and PHTPP potentiated the NP-induced loss of mitochondrial membrane potential and increase in lactate dehydrogenase (LDH) release whereas, ER agonists PPT and DPN inhibited these effects. RXR antagonist HX531 diminished the NP-evoked loss of mitochondrial membrane potential, the activity of caspase-3 and LDH release. In addition, exposure to NP inhibited ERα- and ERß-specific immunofluorescence but stimulated RXR-specific immunolabeling in mouse hippocampal cells. In conclusion, our study demonstrated that the apoptotic and toxic actions of NP on neuronal cells in early development is accompanied by an impairment of ER- and stimulation of RXR-mediated signaling pathways. Taking into account NP-induced alterations in mRNA expression levels of particular types of RXRs, we suggest that NP affected mainly RXRα and RXRß, but not RXRγ signaling.


Asunto(s)
Hipocampo/citología , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Receptores X Retinoide/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Benzoatos/farmacología , Compuestos de Bifenilo/farmacología , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Antagonistas de Estrógenos/farmacología , Estrógenos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , ARN Mensajero/metabolismo , Receptores de Estrógenos/genética , Receptores X Retinoide/genética , Transducción de Señal/efectos de los fármacos
7.
Neuroscience ; 238: 345-60, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23419549

RESUMEN

Phytoestrogens have received considerable attention because they provide an array of beneficial effects, such as neuroprotection. To better understand the molecular and functional link between phytoestrogens and classical as well as membrane estrogen receptors (ERs), we investigated the effect of daidzein on the glutamate-mediated apoptotic pathway. Our study demonstrated that daidzein (0.1-10µM) inhibited the pro-apoptotic and neurotoxic effects caused by glutamate treatment. Hippocampal, neocortical and cerebellar tissues responded to the inhibitory action of daidzein on glutamate-activated caspase-3 and lactate dehydrogenase (LDH) release in a similar manner. Biochemical data were supported at the cellular level by Hoechst 33342 and calcein AM staining. The sensitivity of neuronal cells to daidzein-mediated protection was most prominent in hippocampal cultures at an early stage of development 7th day in vitro. A selective estrogen receptor ß (ERß) antagonist, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5,-a]pyrimidin-3-yl]phenol (PHTPP), and a selective G-protein-coupled receptor 30 (GPR30) antagonist, 3aS(∗),4R(∗),9bR(∗))-4-(6-Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G15), reversed the daidzein-mediated inhibition of glutamate-induced loss of membrane mitochondrial potential, caspase-3 activity, and LDH release. A selective ERα antagonist, methyl-piperidino-pyrazole (MPP), did not influence any anti-apoptotic effect of daidzein. However, a high-affinity estrogen receptor antagonist, 7α,17ß-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI) 182,780, and a selective GPR30 agonist, (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), intensified the protective action of daidzein against glutamate-induced loss of membrane mitochondrial potential and LDH release. In siRNA ERß- and siRNA GPR30-transfected cells, daidzein did not inhibit the glutamate-induced effects. Twenty-four hour exposure to glutamate did not affect the cellular distribution of ERß and GPR30, but caused greater than 100% increase in the levels of the receptors. Co-treatment with daidzein decreased the level of ERß without significant changing of the GPR30 protein level. Here, we elucidated neuroprotective effects of daidzein at low micromolar concentrations and demonstrated that the phytoestrogens may exert their effects through novel extranuclear GPR30 and the classical transcriptionally acting ERß. These studies uncover key roles of the ERß and GPR30 intracellular signaling pathways in mediating the anti-apoptotic action of daidzein and may provide insight into new strategies to treat or prevent neural degeneration.


Asunto(s)
Cerebelo/metabolismo , Receptor beta de Estrógeno/metabolismo , Hipocampo/metabolismo , Isoflavonas/farmacología , Neocórtex/metabolismo , Fármacos Neuroprotectores/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Benzodioxoles/farmacología , Caspasa 3/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/farmacología , Receptor beta de Estrógeno/antagonistas & inhibidores , Fulvestrant , Ácido Glutámico/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Neocórtex/citología , Neocórtex/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Receptores de Estrógenos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA