Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Synchrotron Radiat ; 25(Pt 1): 145-150, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271764

RESUMEN

The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ±â€…6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

2.
Phys Rev Lett ; 120(5): 055002, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29481207

RESUMEN

Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1s→2p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

3.
Nature ; 482(7383): 59-62, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22278059

RESUMEN

Matter with a high energy density (>10(5) joules per cm(3)) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>10(17) watts per cm(2), previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 10(6) kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray-matter interactions, and illustrate the importance of electron-ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.

4.
Phys Rev Lett ; 119(15): 154801, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29077438

RESUMEN

A simple method for generating single-spike hard x-ray pulses in free-electron lasers (FELs) has been developed at the Linac Coherent Light Source (LCLS). This is realized by nonlinear bunch compression using 20-pC bunch charge, demonstrated in the hard x-ray regime at 5.6 and 9 keV, respectively. Measurements show about half of the FEL shots containing a single-spike spectrum. At 5.6-keV photon energy, the single-spike shots have a mean pulse energy of about 10 µJ with 70% intensity fluctuation and the pulse full width at half maximum is evaluated to be at 200-as level.

5.
Phys Rev Lett ; 119(8): 085001, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28952743

RESUMEN

We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-µm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness-independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the Kα transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

6.
Phys Rev Lett ; 119(7): 075002, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949680

RESUMEN

A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10^{16} -10^{17} W/cm^{2}. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray free-electron laser pulses.

7.
Heredity (Edinb) ; 117(6): 408-416, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27485667

RESUMEN

In many taxa, sex chromosomes are heteromorphic and largely non-recombining. Evolutionary models predict that spread of recombination suppression on the Y chromosome is fueled by the accumulation of sexually antagonistic alleles in close linkage to the sex determination region. However, empirical evidence for the existence of sexually antagonistic alleles is scarce. In the mosquito Aedes aegypti, the sex-determining chromosomes are homomorphic. The region of suppressed recombination, which surrounds the male-specific sex-determining gene, remains very small, despite ancient origin of the sex chromosomes in the Aedes lineage. We conducted a genetic analysis of the A. aegypti chromosome region tightly linked to the sex locus. We used a strain with an enhanced green fluorescent protein (EGFP)-tagged transgene inserted near the male-determining gene to monitor crossing-over events close to the boundary of the sex-determining region (SDR), and to trace the inheritance pattern of the transgene in relation to sex. In a series of crossing experiments involving individuals with a recombinant sex chromosome we found developmental abnormalities leading to 1:2 sex biases, caused by lethality of half of the male or female progeny. Our results suggest that various factors causing sex-specific lethal effects are clustered within the neighborhood of the SDR, which in the affected sex are likely lost or gained through recombination, leading to death. These may include genes that are recessive lethal, vital for development and/or sexually antagonistic. The sex chromosome fragment in question represents a fascinating test case for the analysis of processes that shape stable boundaries of a non-recombining region.


Asunto(s)
Aedes/genética , Ligamiento Genético , Sitios Genéticos , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Alelos , Animales , Animales Modificados Genéticamente/genética , Cruzamientos Genéticos , Intercambio Genético , Femenino , Masculino , Mutagénesis Insercional , Razón de Masculinidad , Transgenes
8.
Phys Rev Lett ; 114(1): 015003, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615475

RESUMEN

High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agreement with atomic-kinetics simulations.

9.
Phys Rev Lett ; 114(5): 054801, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25699448

RESUMEN

The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users.

10.
Phys Rev E ; 109(4-2): 045204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755888

RESUMEN

We report on experiments where solid-density Mg plasmas are created by heating with the focused output of the Linac Coherent Light Source x-ray free-electron laser. We study the K-shell emission from the helium- and lithium-like ions using Bragg crystal spectroscopy. Observation of the dielectronic satellites in lithium-like ions confirms that the M-shell electrons appear bound for these high charge states. An analysis of the intensity of these satellites indicates that when modeled with an atomic-kinetics code, the ionization potential depression model employed needs to produce depressions for these ions which lie between those predicted by the well known Stewart-Pyatt and Ecker-Kroll models. These results are largely consistent with recent density functional theory calculations.

11.
Phys Rev Lett ; 110(13): 134801, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581326

RESUMEN

With an eye toward extending optical wave-mixing techniques to the x-ray regime, we present the first experimental demonstration of a two-color x-ray free-electron laser at the Linac Coherent Light Source. We combine the emittance-spoiler technique with a magnetic chicane in the undulator section to control the pulse duration and relative delay between two intense x-ray pulses and we use differently tuned canted pole undulators such that the two pulses have different wavelengths as well. Two schemes are shown to produce two-color soft x-ray pulses with a wavelength separation up to ∼1.9% and a controllable relative delay up to 40 fs.

12.
Phys Rev Lett ; 111(13): 134801, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24116783

RESUMEN

We show that the spectral properties of a self-amplified spontaneous emission x-ray free-electron laser can be controlled by modulating the gain in magnetic undulators, thus producing one or several spectral lines within a single few femtosecond pulse. By varying the magnetic field along the undulator and the electron beam transport line, the system we demonstrate can tailor the x-ray spectrum to optimally meet numerous experimental requirements for multicolor operation.

13.
Phys Rev Lett ; 109(25): 254802, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23368472

RESUMEN

We report the first measurements of x-ray single-pulse duration and two-pulse separation at the Linac Coherent Light Source using a cross-correlation technique involving x rays and electrons. An emittance-spoiling foil is adopted as a very simple and effective method to control the output x-ray pulse. A minimum pulse duration of about 3 fs full width at half maximum has been measured together with a controllable pulse separation (delay) between two pulses. This technique provides critical temporal diagnostics for x-ray experiments such as x-ray pump-probe studies.

14.
Phys Rev Lett ; 108(21): 217402, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003301

RESUMEN

We used photon pulses from an x-ray free-electron laser to study ultrafast x-ray-induced transitions of graphite from solid to liquid and plasma states. This was accomplished by isochoric heating of graphite samples and simultaneous probing via Bragg and diffuse scattering at high time resolution. We observe that disintegration of the crystal lattice and ion heating of up to 5 eV occur within tens of femtoseconds. The threshold fluence for Bragg-peak degradation is smaller and the ion-heating rate is faster than current x-ray-matter interaction models predict.

15.
Phys Rev Lett ; 109(24): 245003, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23368333

RESUMEN

The x-ray intensities made available by x-ray free electron lasers (FEL) open up new x-ray matter interaction channels not accessible with previous sources. We report here on the resonant generation of Kα emission, that is to say the production of copious Kα radiation by tuning the x-ray FEL pulse to photon energies below that of the K edge of a solid aluminum sample. The sequential absorption of multiple photons in the same atom during the 80 fs pulse, with photons creating L-shell holes and then one resonantly exciting a K-shell electron into one of these holes, opens up a channel for the Kα production, as well as the absorption of further photons. We demonstrate rich spectra of such channels, and investigate the emission produced by tuning the FEL energy to the K-L transitions of those highly charged ions that have transition energies below the K edge of the cold material. The spectra are sensitive to x-ray intensity dependent opacity effects, with ions containing L-shell holes readily reabsorbing the Kα radiation.

16.
Phys Rev Lett ; 109(6): 065002, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23006275

RESUMEN

We have used the Linac Coherent Light Source to generate solid-density aluminum plasmas at temperatures of up to 180 eV. By varying the photon energy of the x rays that both create and probe the plasma, and observing the K-α fluorescence, we can directly measure the position of the K edge of the highly charged ions within the system. The results are found to disagree with the predictions of the extensively used Stewart-Pyatt model, but are consistent with the earlier model of Ecker and Kröll, which predicts significantly greater depression of the ionization potential.

17.
Opt Express ; 19(22): 21855-65, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22109037

RESUMEN

We present a new technique for measuring the relative delay between a soft x-ray FEL pulse and an optical laser that indicates a sub 25 fs RMS measurement error. An ultra-short x-ray pulse photo-ionizes a semiconductor (Si(3)N(4)) membrane and changes the optical transmission. An optical continuum pulse with a temporally chirped bandwidth spanning 630 nm-710 nm interacts with the membrane such that the timing of the x-ray pulse can be determined from the onset of the spectral modulation of the transmitted optical pulse. This experiment demonstrates a nearly in situ single-shot measurement of the x-ray pulse arrival time relative to the ultra-short optical pulse.

18.
Opt Express ; 19(1): 193-205, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21263557

RESUMEN

We investigated the damage mechanism of MoN/SiN multilayer XUV optics under two extreme conditions: thermal annealing and irradiation with single shot intense XUV pulses from the free-electron laser facility in Hamburg - FLASH. The damage was studied "post-mortem" by means of X-ray diffraction, interference-polarizing optical microscopy, atomic force microscopy, and scanning transmission electron microscopy. Although the timescale of the damage processes and the damage threshold temperatures were different (in the case of annealing it was the dissociation temperature of Mo2N and in the case of XUV irradiation it was the melting temperature of MoN) the main damage mechanism is very similar: molecular dissociation and the formation of N2, leading to bubbles inside the multilayer structure.

19.
Insect Mol Biol ; 20(2): 141-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20958808

RESUMEN

In this study, we used extensive expressed sequence tag evidence obtained through 454 and Solexa next-generation sequencing to explore mtDNA transcription in male and female first instar larvae of Aedes aegypti and adults of Aedes aegypti, Anopheles gambiae, and Anopheles quadrimaculatus. Relative abundances of individual transcripts differed considerably within each sample, consistent with the differential stability of messenger RNA species. Large differences were also observed between species and between larval and adult stages; however, the male and female larval samples were remarkably similar. Quantitative PCR analysis of selected genes, cox1, l-rRNA and nd5, in larvae and adults of Ae. aegypti and in An. gambiae adults was consistent with the RNA-Seq-based quantification of expression. Finally, the absence of a conserved mtDNA region involved in transcriptional control in other dipterans suggests that mosquitoes have evolved a distinct mechanism of regulation of gene expression in the mitochondrion.


Asunto(s)
Aedes/genética , Anopheles/genética , Perfilación de la Expresión Génica/métodos , Genes Mitocondriales , Proteínas de Insectos/genética , Aedes/metabolismo , Envejecimiento , Animales , Anopheles/metabolismo , Secuencia de Bases , Complejo IV de Transporte de Electrones/genética , Etiquetas de Secuencia Expresada , Femenino , Regulación de la Expresión Génica , Genes de ARNr , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Masculino , Datos de Secuencia Molecular , NADH Deshidrogenasa/genética , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Caracteres Sexuales
20.
Phys Rev Lett ; 106(16): 164801, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21599370

RESUMEN

We have studied a solid-to-plasma transition by irradiating Al foils with the FLASH free electron laser at intensities up to 10(16) W/cm(2). Intense XUV self-emission shows spectral features that are consistent with emission from regions of high density, which go beyond single inner-shell photoionization of solids. Characteristic features of intrashell transitions allowed us to identify Auger heating of the electrons in the conduction band occurring immediately after the absorption of the XUV laser energy as the dominant mechanism. A simple model of a multicharge state inverse Auger effect is proposed to explain the target emission when the conduction band at solid density becomes more atomiclike as energy is transferred from the electrons to the ions. This allows one to determine, independent of plasma simulations, the electron temperature and density just after the decay of crystalline order and to characterize the early time evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA