Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(1): 16, 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38135839

RESUMEN

KEY MESSAGE: PtrANR1 positively regulates plant drought tolerance by increasing proline level and reducing ROS accumulation. PtrANR1 directly activates PtrAUX1 expression to promote root growth and improve plant drought tolerance. Citrus quality and yield are severely declined under drought stress. To date, the effects of MADS-box family transcription factors (TFs) on plant drought resistance have made some progress. However, whether MADS-box family TFs are associated with citrus drought response has remained unclear. The current paper identified a MADS-box family gene PtrANR1 encoding anthocyanidin reductase from trifoliate orange. PtrANR1 exhibits high identities with ANR1 proteins found in various plants. PtrANR1 possesses two conserved domains known as MADS and kertanin-like domains. PtrANR1 is a nuclear protein which has transactivation activity. A significant induction of PtrANR1 transcript was detected in leaves and roots of trifoliate orange treated with PEG6000 and ABA. Under drought stress, Arabidopsis ectopic overexpressing PtrANR1 exhibited obviously elevated contents of proline, ABA and IAA, better developed root, enhanced antioxidant enzyme activities, as well as notably reduced accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) compared with WT plants. However, opposite change trends of these physiological indices were detected in PtrANR1 homolog silencing lemon. Furthermore, transgenic Arabidopsis displayed significantly increased expression levels in genes associated with ABA, IAA and proline production, IAA polar transport, ROS elimination and drought response. However, these genes exhibited noticeably decreased transcript levels in PtrANR1 homolog silencing lemon. Moreover, PtrANR1 could increase IAA content and promote root growth by binding to GArG-box in the promoter of PtrAUX1 to activate its transcript. These findings indicated that PtrANR1 had a beneficial impact on plant drought resistance through promoting root development, increasing proline accumulation and scavenging of ROS.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sequías , Plantas Modificadas Genéticamente/genética , Antioxidantes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Prolina/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética
2.
Plant Cell Physiol ; 63(6): 785-801, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35348748

RESUMEN

Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.


Asunto(s)
Ficus , Proteoma , Ficus/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica , Vacuolas/metabolismo
3.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628469

RESUMEN

Drought is one of the main abiotic stresses limiting the quality and yield of citrus. Cuticular waxes play an important role in regulating plant drought tolerance and water use efficiency (WUE). However, the contribution of cuticular waxes to drought tolerance, WUE and the underlying molecular mechanism is still largely unknown in citrus. 'Longhuihong' (MT) is a bud mutant of 'Newhall' navel orange with curly and bright leaves. In this study, significant increases in the amounts of total waxes and aliphatic wax compounds, including n-alkanes, n-primary alcohols and n-aldehydes, were overserved in MT leaves, which led to the decrease in cuticular permeability and finally resulted in the improvements in drought tolerance and WUE. Compared to WT leaves, MT leaves possessed much lower contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), significantly higher levels of proline and soluble sugar, and enhanced superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress, which might reduce reactive oxygen species (ROS) damage, improve osmotic regulation and cell membrane stability, and finally, enhance MT tolerance to drought stress. Transcriptome sequencing results showed that seven structural genes were involved in wax biosynthesis and export, MAPK cascade, and ROS scavenging, and seven genes encoding transcription factors might play an important role in promoting cuticular wax accumulation, improving drought tolerance and WUE in MT plants. Our results not only confirmed the important role of cuticular waxes in regulating citrus drought resistance and WUE but also provided various candidate genes for improving citrus drought tolerance and WUE.


Asunto(s)
Citrus sinensis , Sequías , Citrus sinensis/genética , Citrus sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Agua/metabolismo , Ceras/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499381

RESUMEN

Drought limits citrus yield and fruit quality worldwide. The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant response to drought stress. However, few bHLH TFs related to drought response have been functionally characterized in citrus. In this study, a bHLH family gene, named PtrbHLH66, was cloned from trifoliate orange. PtrbHLH66 contained a highly conserved bHLH domain and was clustered closely with bHLH66 homologs from other plant species. PtrbHLH66 was localized to the nucleus and had transcriptional activation activity. The expression of PtrbHLH66 was significantly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Ectopic expression of PtrbHLH66 promoted the seed germination and root growth, increased the proline and ABA contents and the activities of antioxidant enzymes, but reduced the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) under drought stress, resulting in enhanced drought tolerance of transgenic Arabidopsis. In contrast, silencing the PtrbHLH66 homolog in lemon plants showed the opposite effects. Furthermore, under drought stress, the transcript levels of 15 genes involved in ABA biosynthesis, proline biosynthesis, ROS scavenging and drought response were obviously upregulated in PtrbHLH66 ectopic-expressing Arabidopsis but downregulated in PtrbHLH66 homolog silencing lemon. Thus, our results suggested that PtrbHLH66 acted as a positive regulator of plant drought resistance by regulating root growth and ROS scavenging.


Asunto(s)
Arabidopsis , Poncirus , Arabidopsis/metabolismo , Poncirus/genética , Poncirus/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Resistencia a la Sequía , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Sequías , Prolina/metabolismo
5.
Food Chem ; 403: 134263, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166927

RESUMEN

To comprehensively analyse flavour substance formation in Congou black tea, dynamic changes in non-volatile and volatile compositions and enzymatic activity were analysed. In total, 107 non-volatile and 222 volatile compositions were identified via ultra-high performance liquid chromatography coupled with quadrupole-exactive mass spectrometry (UHPLC-Q-Exactive/MS) and stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS), and eight metabolic pathways were explored during tea processing. Significant variations in metabolites were observed during processing (P < 0.05), especially in the fermentation stage, including high accumulation of taste and colour substances due to decreased flavonoid synthase activity and elevated oxidase activity. Correlation analysis clarified that the mutual transformation between non-volatile and volatile substances occurs in certain types of processing, including amino acids, amino acid-derived volatiles (AADVs), glycosidically bound volatiles (GBVs), and volatile terpenoids (VTs). Our study provides a detailed overview of the dynamic changes of in flavour substrates and key enzyme activities during Congou black tea processing.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Té/química , Gusto , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Camellia sinensis/química , Aromatizantes/análisis , Aminoácidos/metabolismo , Redes y Vías Metabólicas
6.
Front Plant Sci ; 13: 924552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865286

RESUMEN

Drought stress often occurred in citrus to limit its growth, distribution, and fruit quality. Cuticular waxes play an important role in regulating plant tolerance to drought stress. Plant enoyl-CoA reductase (ECR) is involved in the biosynthesis of cuticular waxes and catalyzes the last step of very long-chain fatty acids (VLCFAs) elongation. In this study, a putative ECR gene, named CsECR, was cloned from "Newhall" navel orange. CsECR protein has high identities with other plant ECR proteins and contained a conserved NADP/NAD-binding motif and three conserved functional sites. The highest expression of CsECR was observed in leaves, followed by stems, flavedos, ovaries, juice sacs, stigmas, stamens, albedos, and petals. Besides, the expression of CsECR was significantly induced by PEG6000 and ABA treatments. Ectopic overexpression of CsECR increased the contents of total waxes and aliphatic wax fractions (n-fatty acids, unsaturated fatty acids, n-alkanes, alkenes, iso-, and anteiso-alkanes) in the leaves and fruits of the transgenic tomato. Furthermore, ectopic overexpression of CsECR reduced the cuticle permeability in the leaves and fruits of the transgenic tomato and increased its tolerance to drought stress. Taken together, our results revealed that CsECR plays an important role in plant response to drought stresses by regulating cuticular wax biosynthesis.

7.
Front Plant Sci ; 10: 641, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156689

RESUMEN

The vacuole plays a central role in fruit growth and quality formation, yet its proteomic landscape is largely unknown. In the present study, a protocol for isolating intact vacuoles from grape flesh tissue was successfully established. Quantitative proteome analysis identified 2533 proteins from five sampling dates along Cabernet Sauvignon berry development from stage I to III; among them, 1443 proteins were identified on all five sampling dates in at least two biological replicates per sample and were designated core proteome, and 1820 were recruited as differentially abundant proteins (DAPs) by sequential pairwise comparisons using arbitrary fold change of >1.5 and P < 0.05. Metabolism consistently constituted the largest category of identified proteins for both core proteome and DAPs, together with a consistently high proportion of protein-fate category proteins, indicating that the classic lytic functions of vegetative cell vacuoles are maintained throughout berry development; accumulation of metabolites involved in high sugar and other berry qualities in the late developmental stage added to the conventional lytic role of the flesh cell vacuoles. Overall increases in abundance of the DAPs were seen in the transporter proteins, membrane fusion/vesicle trafficking, and protein-fate categories, and decreased abundance was seen for DAPs in the stress, energy and cytoskeleton categories as berry development progressed. A very pronounced proteomic change was revealed between late stage I and mid stage II, with 915 increased and 114 decreased DAPs, demonstrating a significant surge of the vacuolar proteome underlying the rather static phenotypical and physiological phase. We identified 161 transport proteins with differential abundance, including proton pumps, aquaporins, sugar transporters, ATP-binding cassette transporters and ion transport proteins, together with organic compound transport proteins, the highest number and variety of berry tonoplast transporters found in grape proteome efforts to date. We further found a pre-positive increment of 96 transport proteins from the middle of stage II, before the berry undergoes its dramatic physiological changes at and following véraison. Our results are the first to describe the proteome of a vacuole-enriched preparation, toward understanding the functions of the largest compartment in berry cells during grape growth and ripening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA