Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Radiology ; 307(2): e221648, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36719293

RESUMEN

Background Currently, the hepatic venous pressure gradient (HVPG) remains the reference standard for diagnosis of clinically significant portal hypertension (CSPH) but is limited by its invasiveness and availability. Purpose To investigate a vascular geometric model for noninvasive diagnosis of CSPH (HVPG ≥10 mm Hg) in patients with liver cirrhosis for both contrast-enhanced CT and MRI. Materials and Methods In this retrospective study, consecutive patients with liver cirrhosis who underwent HVPG measurement from August 2016 to April 2019 were included. Patients without hepatic diseases were included and marked as non-CSPH to balance the ratio of CSPH 1:1. A variety of vascular parameters were extracted from the portal vein, hepatic vein, aorta, and inferior vena cava and then entered into a vascular geometric model for identification of CSPH. Diagnostic performance was assessed with the area under the receiver operating characteristic curve (AUC). Results The model was developed and tested with retrospective data from 250 patients with liver cirrhosis and 273 patients without clinical evidence of hepatic disease at contrast-enhanced CT examination, including 213 patients with CSPH (mean age, 49 years ± 12 [SD]; 138 women) and 310 patients without CSPH (mean age, 50 years ± 9; 177 women). For external validation, an MRI data set with 224 patients with cirrhosis (mean age, 49 years ± 10; 158 women) and a CT data set with 106 patients with cirrhosis (mean age, 53 years ± 12; 71 women) were analyzed. Significant reductions in mean whole-vessel volumes were observed in the portal vein (ranging from 36.9 cm3 ± 16.0 to 29.6 cm3 ± 11.1; P < .05) and hepatic vein (ranging from 35.3 cm3 ± 21.5 to 22.4 cm3 ± 15.7; P < .05) when CSPH occurred. Similarly, the mean whole-vessel lengths were shorter in patients with CSPH (portal vein: 1.7 m ± 1.2 vs 3.0 m ± 2.4, P < .05; hepatic vein: 0.9 m ± 1.5 vs 1.8 m ± 1.5, P < .05) than in those without CSPH. The proposed vascular model performed well in the internal test set (mean AUC, 0.90 ± 0.02) and external test sets (mean AUCs, 0.84 ± 0.12 and 0.87 ± 0.11). Conclusion A contrast-enhanced CT- and MRI-based vascular model was proposed with good diagnostic consistency for hepatic venous pressure gradient measurement. ClinicalTrials.gov registration nos. NCT03138915 and NCT03766880 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Roldán-Alzate and Reeder in this issue.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hipertensión Portal , Femenino , Humanos , Persona de Mediana Edad , Hipertensión Portal/patología , Hígado/diagnóstico por imagen , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/patología , Imagen por Resonancia Magnética , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
3.
Sci Data ; 11(1): 687, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918497

RESUMEN

Cardiac magnetic resonance imaging (CMR) has emerged as a valuable diagnostic tool for cardiac diseases. However, a significant drawback of CMR is its slow imaging speed, resulting in low patient throughput and compromised clinical diagnostic quality. The limited temporal resolution also causes patient discomfort and introduces artifacts in the images, further diminishing their overall quality and diagnostic value. There has been growing interest in deep learning-based CMR imaging algorithms that can reconstruct high-quality images from highly under-sampled k-space data. However, the development of deep learning methods requires large training datasets, which have so far not been made publicly available for CMR. To address this gap, we released a dataset that includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects. Imaging studies include cardiac cine and mapping sequences. The 'CMRxRecon' dataset contains raw k-space data and auto-calibration lines. Our aim is to facilitate the advancement of state-of-the-art CMR image reconstruction by introducing standardized evaluation criteria and making the dataset freely accessible to the research community.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Algoritmos , Corazón/diagnóstico por imagen , Cardiopatías/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
4.
Phenomics ; 3(6): 642-656, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223689

RESUMEN

Imaging-derived phenotypes (IDPs) have been increasingly used in population-based cohort studies in recent years. As widely reported, magnetic resonance imaging (MRI) is an important imaging modality for assessing the anatomical structure and function of the brain with high resolution and excellent soft-tissue contrast. The purpose of this article was to describe the imaging protocol of the brain MRI in the China Phenobank Project (CHPP). Each participant underwent a 30-min brain MRI scan as part of a 2-h whole-body imaging protocol in CHPP. The brain imaging sequences included T1-magnetization that prepared rapid gradient echo, T2 fluid-attenuated inversion-recovery, magnetic resonance angiography, diffusion MRI, and resting-state functional MRI. The detailed descriptions of image acquisition, interpretation, and post-processing were provided in this article. The measured IDPs included volumes of brain subregions, cerebral vessel geometrical parameters, microstructural tracts, and function connectivity metrics.

5.
Phenomics ; 1(4): 151-170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35233561

RESUMEN

Cardiac magnetic resonance (CMR) imaging provides important biomarkers for the early diagnosis of many cardiovascular diseases and has been reported to reveal phenome-wide associations of cardiac/aortic structure and functionality in population studies. Nevertheless, due to the complexity of operation and variations among manufactural vendors, magnetic field strengths, coils, sequences, scan parameters, and image analysis approaches, CMR is rarely used in large cohort studies. Existing guidelines mainly focused on the diagnosis of cardiovascular diseases, which did not aim to basic research. The purpose of this study was to propose a recommendation for CMR based phenotype measurements for cohort study. We classify the imaging sequences of CMR into three categories according to the importance and universality of corresponding measurable phenotypes. The acquisition time and repeatability of the phenotypic measurement were also taken into consideration during the categorization. Unlike other guidelines, this recommendation focused on quantitative measurement of large amount of phenotypes from CMR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA