Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Psychol Med ; 54(1): 108-116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36600668

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is effective for treatment-resistant depression and leads to short-term structural brain changes and decreases in the inflammatory response. However, little is known about how brain structure and inflammation relate to the heterogeneity of treatment response in the months following an index ECT course. METHODS: A naturalistic six-month study following an index ECT course included 20 subjects with treatment-resistant depression. Upon conclusion of the index ECT course and again after six months, structural magnetic resonance imaging scans and peripheral inflammation measures [interleukin-6 (IL-6), IL-8, tumor necrosis factor (TNF-α), and C-reactive protein] were obtained. Voxel-based morphometry processed with the CAT-12 Toolbox was used to estimate changes in gray matter volume. RESULTS: Between the end of the index ECT course and the end of follow-up, we found four clusters of significant decreases in gray matter volume (p < 0.01, FWE) and no regions of increased volume. Decreased HAM-D scores were significantly related only to reduced IL-8 level. Decreased volume in one cluster, which included the right insula and Brodmann's Area 22, was related to increased HAM-D scores over six months. IL-8 levels did not mediate or moderate the relationship between volumetric change and depression. CONCLUSIONS: Six months after an index ECT course, multiple regions of decreased gray matter volume were observed in a naturalistic setting. The independent relations between brain volume and inflammation to depressive symptoms suggest novel explanations of the heterogeneity of longer-term ECT treatment response.


Asunto(s)
Terapia Electroconvulsiva , Humanos , Terapia Electroconvulsiva/métodos , Depresión , Interleucina-8 , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Inflamación , Imagen por Resonancia Magnética/métodos , Factor de Necrosis Tumoral alfa , Plasticidad Neuronal
2.
Neuroimage ; 250: 118874, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35017127

RESUMEN

Transcranial direct current stimulation (tDCS) can influence performance on behavioral tasks and improve symptoms of brain conditions. Yet, it remains unclear precisely how tDCS affects brain function and connectivity. Here, we measured changes in functional connectivity (FC) metrics in blood-oxygenation-level-dependent (BOLD) fMRI data acquired during MR-compatible tDCS in a whole-brain analysis with corrections for false discovery rate. Volunteers (n = 64) received active tDCS, sham tDCS, and rest (no stimulation), using one of three previously established electrode tDCS montages targeting left dorsolateral prefrontal cortex (DLPFC, n = 37), lateral temporoparietal area (LTA, n = 16), or superior temporal cortex (STC, n = 11). In brain networks where simulated E field was highest in each montage, connectivity with remote nodes decreased during active tDCS. During active DLPFC-tDCS, connectivity decreased between a fronto-parietal network and subgenual ACC, while during LTA-tDCS connectivity decreased between an auditory-somatomotor network and frontal operculum. Active DLPFC-tDCS was also associated with increased connectivity within an orbitofrontal network overlapping subgenual ACC. Irrespective of montage, FC metrics increased in sensorimotor and attention regions during both active and sham tDCS, which may reflect the cognitive-perceptual demands of tDCS. Taken together, these results indicate that tDCS may have both intended and unintended effects on ongoing brain activity, stressing the importance of including sham, stimulation-absent, and active comparators in basic science and clinical trials of tDCS.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino
3.
Psychol Med ; 52(12): 2376-2386, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35578581

RESUMEN

BACKGROUND: Ketamine is a rapidly-acting antidepressant treatment with robust response rates. Previous studies have reported that serial ketamine therapy modulates resting state functional connectivity in several large-scale networks, though it remains unknown whether variations in brain structure, function, and connectivity impact subsequent treatment success. We used a data-driven approach to determine whether pretreatment multimodal neuroimaging measures predict changes along symptom dimensions of depression following serial ketamine infusion. METHODS: Patients with depression (n = 60) received structural, resting state functional, and diffusion MRI scans before treatment. Depressive symptoms were assessed using the 17-item Hamilton Depression Rating Scale (HDRS-17), the Inventory of Depressive Symptomatology (IDS-C), and the Rumination Response Scale (RRS) before and 24 h after patients received four (0.5 mg/kg) infusions of racemic ketamine over 2 weeks. Nineteen unaffected controls were assessed at similar timepoints. Random forest regression models predicted symptom changes using pretreatment multimodal neuroimaging and demographic measures. RESULTS: Two HDRS-17 subscales, the HDRS-6 and core mood and anhedonia (CMA) symptoms, and the RRS: reflection (RRSR) scale were predicted significantly with 19, 27, and 1% variance explained, respectively. Increased right medial prefrontal cortex/anterior cingulate and posterior insula (PoI) and lower kurtosis of the superior longitudinal fasciculus predicted reduced HDRS-6 and CMA symptoms following treatment. RRSR change was predicted by global connectivity of the left posterior cingulate, left insula, and right superior parietal lobule. CONCLUSIONS: Our findings support that connectivity of the anterior default mode network and PoI may serve as potential biomarkers of antidepressant outcomes for core depressive symptoms.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Red en Modo Predeterminado , Depresión/diagnóstico por imagen , Depresión/tratamiento farmacológico , Humanos , Ketamina/farmacología , Imagen por Resonancia Magnética/métodos
4.
Psychol Med ; 52(13): 2596-2605, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33267926

RESUMEN

BACKGROUND: Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized. METHODS: Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status. RESULTS: Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern. CONCLUSION: Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.


Asunto(s)
Conectoma , Trastorno Depresivo Mayor , Ketamina , Humanos , Femenino , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo
5.
Mol Psychiatry ; 26(8): 4288-4299, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32029885

RESUMEN

Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (n = 44, 23 female) to determine their relationship, if any, with improvement after ECT. Voxelwise analyses were restricted to the hippocampus, amygdala, and parahippocampal cortex, and applied separately for responders and nonresponders to ECT. In analyses of arterial spin-labeled (ASL) MRI, nonresponders exhibited increased cerebral blood flow (CBF) in bilateral anterior hippocampus, while responders showed CBF increases in right middle and left posterior hippocampus. In analyses of gray matter volume (GMV) using T1-weighted MRI, GMV increased throughout bilateral hippocampus and surrounding tissue in nonresponders, while responders showed increased GMV in right anterior hippocampus only. Using CBF loci as seed regions, BOLD-fMRI data from healthy controls (n = 36, 19 female) identified spatially separable neurofunctional networks comprised of different brain regions. In graph theory analyses of these networks, functional connectivity within a hippocampus-thalamus-striatum network decreased only in responders after two treatments and after index. In sum, our results suggest that the location of ECT-related plasticity within the hippocampus may differ according to antidepressant outcome, and that larger amounts of hippocampal plasticity may not be conducive to positive antidepressant response. More focused targeting of hippocampal subregions and/or circuits may be a way to improve ECT outcome.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Antidepresivos , Encéfalo , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Hipocampo , Humanos , Imagen por Resonancia Magnética
6.
Hum Brain Mapp ; 41(7): 1699-1710, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32115848

RESUMEN

Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.0 SD) or repeated subanesthetic (0.5 mg/kg) intravenous ketamine therapy (N = 27, mean age: 37.3, 10.8 SD) using a naturalistic study design. MRI and clinical data were collected before (TP1) and after treatment (TP2); healthy controls (N = 31, mean age: 34.5, 13.5 SD) completed one MRI session (TP1). An fMRI face-matching task probed negative- and positive-valence systems. Whole-brain analysis, comparing neurofunctional changes within and across treatment groups, targeted brain regions involved in emotional facial processing, and included regions-of-interest analysis of amygdala responsivity. Main findings revealed a decrease in amygdalar reactivity after both ECT and ketamine for positive and negative emotional face processing (p < .05 family wise-error (FWE) corrected). Subthreshold changes were observed between treatments within the dorsolateral prefrontal cortex and insula (p < .005, uncorrected). BOLD change for positive faces in the inferior parietal cortex significantly correlated with overall symptom improvement, and BOLD change in frontal regions correlated with anxiety for negative faces, and anhedonia for positive faces (p < .05 FWE corrected). Both serial ketamine and ECT treatment modulate amygdala response, while more subtle treatment-specific changes occur in the larger functional network. Findings point to both common and differential mechanistic upstream systems-level effects relating to fast-acting antidepressant response, and symptoms of anxiety and anhedonia, for the processing of emotionally valenced stimuli.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/psicología , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva , Ketamina/uso terapéutico , Adulto , Antidepresivos/administración & dosificación , Mapeo Encefálico , Trastorno Depresivo Mayor/diagnóstico por imagen , Emociones , Femenino , Humanos , Inyecciones Intravenosas , Ketamina/administración & dosificación , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre
7.
Neuroimage ; 182: 441-455, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29242104

RESUMEN

Chronic musculoskeletal pain is a condition that influences central nervous system structure. In this study, we combined novel structural neuroimaging techniques, using well-validated software packages including FSL, Mrtrix3, and DSI Studio, to characterize brain grey (GM) and white matter (WM) differences in chronic musculoskeletal pain participants (n = 74), compared to age-matched pain-free controls (n = 31). In participants with chronic pain, we identified significantly higher volume in subcortical GM structures using voxel-based morphometry (FSLVBM). These differences were most prominent in the caudate, amygdala, and the hippocampus. At the same time, volume was lower in the dorsolateral prefrontal cortex, as well as the primary motor and sensory regions in patients with chronic pain. To delineate WM microstructural differences of neuronal (e.g., activity-dependent myelin remodeling) and non-neuronal (e.g., neuroinflammation) origins, we utilized Mrtrix3 software pipelines to investigate WM fiber complexity, density, and cross-section. Whole-brain analyses revealed lower WM fiber complexity within the corpus callosum and the anterior limb of the left internal capsule. Whole brain and region of interest analyses revealed fiber complexity differences within the salience and the sensorimotor networks. In contrast, we detected non-neuronal white matter density differences within the dorsal attention network: density was lower in the inferior fronto-occipital fasciculus and the splenium of the corpus callosum in chronic musculoskeletal pain. Consistent with the involvement of the dorsal attention network, WM tractography analysis, conducted with DSI Studio and Network Based Statistics, revealed higher connectivity from the superior parietal lobule to the hippocampus in patients with chronic pain. No differences were detected in measures of fiber cross-section, suggesting the absence of neuronal degeneration in chronic pain. The combination of multiple neuroimaging techniques in this study offers a unique window into the structural differences within the chronic pain brain and provides the first evidence of microstructural variations in fiber complexity and density.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Dolor Crónico/diagnóstico por imagen , Cuerpo Calloso/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Sustancia Gris/diagnóstico por imagen , Cápsula Interna/diagnóstico por imagen , Dolor Musculoesquelético/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Humanos
9.
Sci Rep ; 13(1): 2841, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36801903

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique involving administration of well-tolerated electrical current to the brain through scalp electrodes. TDCS may improve symptoms in neuropsychiatric disorders, but mixed results from recent clinical trials underscore the need to demonstrate that tDCS can modulate clinically relevant brain systems over time in patients. Here, we analyzed longitudinal structural MRI data from a randomized, double-blind, parallel-design clinical trial in depression (NCT03556124, N = 59) to investigate whether serial tDCS individually targeted to the left dorso-lateral prefrontal cortex (DLPFC) can induce neurostructural changes. Significant (FWEc p < 0.05) treatment-related gray matter changes were observed with active high-definition (HD) tDCS relative to sham tDCS within the left DLPFC stimulation target. No changes were observed with active conventional tDCS. A follow-up analysis within individual treatment groups revealed significant gray matter increases with active HD-tDCS in brain regions functionally connected with the stimulation target, including the bilateral DLPFC, bilateral posterior cingulate cortex, subgenual anterior cingulate cortex, and the right hippocampus, thalamus and left caudate brain regions. Integrity of blinding was verified, no significant differences in stimulation-related discomfort were observed between treatment groups, and tDCS treatments were not augmented by any other adjunct treatments. Overall, these results demonstrate that serial HD-tDCS leads to neurostructural changes at a predetermined brain target in depression and suggest that such plasticity effects may propagate over brain networks.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Depresión/terapia , Encéfalo/diagnóstico por imagen , Corteza Prefrontal/fisiología , Sustancia Gris/diagnóstico por imagen , Método Doble Ciego
10.
Front Psychiatry ; 14: 1195763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457774

RESUMEN

Background: Total sleep deprivation (TSD) transiently reverses depressive symptoms in a majority of patients with depression. How TSD modulates diffusion tensor imaging (DTI) measures of white matter (WM) microstructure, which may be linked with TSD's rapid antidepressant effects, remains uncharacterized. Methods: Patients with depression (N = 48, mean age = 33, 26 women) completed diffusion-weighted imaging and Hamilton Depression Rating (HDRS) and rumination scales before and after >24 h of TSD. Healthy controls (HC) (N = 53, 23 women) completed the same assessments at baseline, and after receiving TSD in a subset of HCs (N = 15). Tract based spatial statistics (TBSS) investigated voxelwise changes in fractional anisotropy (FA) across major WM pathways pre-to-post TSD in patients and HCs and between patients and HCs at baseline. Post hoc analyses tested for TSD effects for other diffusion metrics, and the relationships between change in diffusion measures with change in mood and rumination symptoms. Results: Significant improvements in mood and rumination occurred in patients with depression (both p < 0.001), but not in HCs following TSD. Patients showed significant (p < 0.05, corrected) decreases in FA values in multiple WM tracts, including the body of the corpus callosum and anterior corona radiata post-TSD. Significant voxel-level changes in FA were not observed in HCs who received TSD (p > 0.05). However, differential effects of TSD between HCs and patients were found in the superior corona radiata, frontal WM and the posterior thalamic radiation (p < 0.05, corrected). A significant (p < 0.05) association between change in FA and axial diffusivity within the right superior corona radiata and improvement in rumination was found post-TSD in patients. Conclusion: Total sleep deprivation leads to rapid microstructural changes in WM pathways in patients with depression that are distinct from WM changes associated with TSD observed in HCs. WM tracts including the superior corona radiata and posterior thalamic radiation could be potential biomarkers of the rapid therapeutic effects of TSD. Changes in superior corona radiata FA, in particular, may relate to improvements in maladaptive rumination.

11.
Transl Psychiatry ; 12(1): 191, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35523776

RESUMEN

Research suggests electroconvulsive therapy (ECT) induces an acute neuroinflammatory response and changes in white matter (WM) structural connectivity. However, whether these processes are related, either to each other or to eventual treatment outcomes, has yet to be determined. We examined the relationship between levels of peripheral pro-inflammatory cytokines and diffusion imaging-indexed changes in WM microstructure in individuals with treatment-resistant depression (TRD) who underwent ECT. Forty-two patients were assessed at baseline, after their second ECT (T2), and after completion of ECT (T3). A Montgomery Åsberg Depression Rating Scale improvement of >50% post-ECT defined ECT-responders (n = 19) from non-responders (n = 23). Thirty-four controls were also examined. Tissue-specific fractional anisotropy (FAt) was estimated using diffusion imaging data and the Free-Water method in 17 WM tracts. Inflammatory panels were evaluated from peripheral blood. Cytokines were examined to characterize the association between potential ECT-induced changes in an inflammatory state and WM microstructure. Longitudinal trajectories of both measures were also examined separately for ECT-responders and non-responders. Patients exhibited elevated Interleukin-8 (IL-8) levels at baseline compared to controls. In patients, correlations between IL-8 and FAt changes from baseline to T2 were significant in the positive direction in the right superior longitudinal fasciculus (R-SLF) and right cingulum (R-CB) (psig = 0.003). In these tracts, linear mixed-effects models revealed that trajectories of IL-8 and FAt were significantly positively correlated across all time points in responders, but not non-responders (R-CB-p = .001; R-SLF-p = 0.008). Our results suggest that response to ECT in TRD may be mediated by IL-8 and WM microstructure.


Asunto(s)
Terapia Electroconvulsiva , Sustancia Blanca , Citocinas , Terapia Electroconvulsiva/métodos , Humanos , Inmunidad , Interleucina-8 , Sustancia Blanca/diagnóstico por imagen
12.
J Affect Disord ; 314: 78-85, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35779673

RESUMEN

BACKGROUND: Alterations in the peripheral inflammatory profile and white matter (WM) deterioration are frequent in Major Depressive Disorder (MDD). The present study applies free-water imaging to investigate the relationship between altered peripheral inflammation and WM microstructure and their predictive value in determining response to ketamine treatment in MDD. METHODS: Ten individuals with MDD underwent diffusion-weighted magnetic resonance imaging and a blood-draw before and 24 h after ketamine infusion. We utilized MANCOVAs and ANCOVAs to compare tissue-specific fractional anisotropy (FAT) and free-water (FW) of the forceps and cingulum, and the ratio of pro-inflammatory interleukin(IL)-8/anti-inflammatory IL-10 between individuals with MDD and 15 healthy controls at baseline. Next, we compared all baseline measures between ketamine responders (6) and non-responders (4) and analyzed changes in imaging and blood data after ketamine infusion. RESULTS: The MDD group exhibited an increased IL-8/IL-10 ratio compared to controls at baseline (p = .040), which positively correlated with average FW across regions of interest (p = .013). Ketamine responders demonstrated higher baseline FAT in the left cingulum than non-responders (p = .023). Ketamine infusion did not influence WM microstructure but decreased the IL-8/IL-10 ratio (p = .043). LIMITATIONS: The small sample size and short follow-up period limit the conclusion regarding the longer-term effects of ketamine in MDD. CONCLUSIONS: This pilot study provides evidence for the role of inflammation in MDD by illustrating an association between peripheral inflammation and WM microstructure. Additionally, we demonstrate that free-water diffusion-weighted imaging might be a valuable tool to determine which individuals with MDD benefit from the anti-inflammatory mediated effects of ketamine treatment.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Sustancia Blanca , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/patología , Humanos , Inflamación/diagnóstico por imagen , Inflamación/tratamiento farmacológico , Inflamación/patología , Interleucina-10 , Interleucina-8 , Ketamina/uso terapéutico , Proyectos Piloto , Agua , Sustancia Blanca/patología
13.
Artículo en Inglés | MEDLINE | ID: mdl-32741703

RESUMEN

BACKGROUND: Subcallosal cingulate (SCC) activity is associated with treatment response in major depressive disorder (MDD). Using electroconvulsive therapy (ECT) as a treatment model in this exploratory study, we addressed whether pretreatment SCC structural connectivity with corticolimbic-striatal circuitry relates to therapeutic outcome and whether these connectivity patterns change with treatment. METHODS: Diffusion magnetic resonance imaging scans were acquired in 43 patients with MDD (mean [SD] age = 41 [13] years; men/women: 18/25) before and within 1 week of completing an ECT index series and in 31 healthy control subjects scanned twice (mean [SD] age = 38 [11] years; men/women: 17/18). Probabilistic tractography from subject-specific anatomically defined SCC seed regions to the ventral striatum (VS), anterior cingulate cortex (ACC), and bilateral medial prefrontal cortex (mPFC) was used to estimate structural connectivity in the target network. RESULTS: SCC-mPFC connectivity was lower in responders (>50% symptom improvement) than nonresponders both before (p < .014) (difference 37%-96% left and right hemispheres) and after (p = .023) (difference 100% right hemisphere) treatment. SCC-mPFC connectivity in responders was also decreased compared with control subjects both at baseline (p = .012) and after ECT (p = .006), whereas nonresponders had SCC-right mPFC connectivity similar to that of control subjects. Subjects with MDD also showed decreased SCC-ACC connectivity compared with control subjects (baseline: p < .003, after ECT: p = .001), although SCC-ACC connectivity did not distinguish responders from nonresponders. Bilateral SCC-VS connectivity decreased (11%) with ECT (p = .021) regardless of treatment response. CONCLUSIONS: While SCC-ACC connectivity may be a hallmark of MDD compared with control subjects, lower pretreatment SCC-mPFC connectivity in ECT responders (compared with nonresponders and control subjects) suggests that connectivity in this pathway may serve as a potential biomarker of therapeutic outcome and be relevant for treatment selection.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Adulto , Trastorno Depresivo Mayor/terapia , Imagen de Difusión por Resonancia Magnética , Femenino , Giro del Cíngulo , Humanos , Imagen por Resonancia Magnética , Masculino
14.
Artículo en Inglés | MEDLINE | ID: mdl-32900657

RESUMEN

BACKGROUND: Ketamine is a highly effective antidepressant for patients with treatment-resistant major depressive disorder (MDD). Resting-state functional magnetic resonance imaging studies show disruptions of functional connectivity (FC) between limbic regions and resting-state networks (RSNs) in MDD, including the default mode network, central executive network (CEN), and salience network (SN). Here, we investigated whether serial ketamine treatments change FC between limbic structures and RSNs. METHODS: Patients with MDD (n = 44) were scanned at baseline (time 1 [T1]) and 24 hours after the first (T2) and fourth (T3) infusions of ketamine. Healthy control subjects (n = 50) were scanned at baseline, with a subgroup (n = 17) being rescanned at 2 weeks. Limbic regions included the amygdala and hippocampus, and RSNs included the default mode network, CEN, and SN. RESULTS: Ketamine increased right amygdala FC to the right CEN (p = .05), decreased amygdala FC to the left CEN (p = .005) at T2 versus T1 (p = .015), which then increased at T3 versus T2 (p = .002), and decreased left amygdala FC to the SN (p = .016). Decreased left amygdala to SN FC at T2 predicted improvements in anxiety at T3 (p = .006). Ketamine increased right hippocampus FC to the left CEN (p = .001), and this change at T2 predicted decreased anhedonia at T3 (p = .005). CONCLUSIONS: Ketamine modulates FC between limbic regions and RSNs implicated in MDD. Increases in FC between limbic regions and the CEN suggest that ketamine may be involved in restoring top-down control of emotion processing. FC decreases between the left amygdala and SN suggest that ketamine may ameliorate MDD-related dysconnectivity in these circuits. Early FC changes between limbic regions and RSNs may be predictive of clinical improvements.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Encéfalo , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Ketamina/farmacología , Vías Nerviosas
15.
Neuroimage Clin ; 32: 102792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34571429

RESUMEN

Patients with major depressive disorder (MDD) exhibit impaired control of cognitive and emotional systems, including deficient response selection and inhibition. Though these deficits are typically attributed to abnormal communication between macro-scale cortical networks, altered communication with the cerebellum also plays an important role. Yet, how the circuitry between the cerebellum and large-scale functional networks impact treatment outcome in MDD is not understood. We thus examined how ketamine, which elicits rapid therapeutic effects in MDD, modulates cerebro-cerebellar circuitry during response-inhibition using a functional imaging NoGo/Go task in MDD patients (N = 46, mean age: 39.2, 38.1% female) receiving four ketamine infusions, and healthy controls (N = 32, mean age:35.2, 71.4% female). We fitted psychophysiological-interaction (PPI) models for a functionally-derived cerebellar-seed and extracted average PPI in three target functional networks, frontoparietal (FPN), sensory-motor (SMN) and salience (SN) networks. Time and remission status were then evaluated for each of the networks and their network-nodes. Follow-up tests examined whether PPI-connectivity differed between patient remitter/non-remitters and controls. Results showed significant decreases in PPI-connectivity after ketamine between the cerebellum and FPN (p < 0.001) and SMN networks (p = 0.008) in remitters only (N = 20). However, ketamine-related changes in PPI-connectivity between the cerebellum and the SN (p = 0.003) did not vary with remitter status. Cerebellar-FPN, -SN PPI values at baseline were also associated with treatment outcome. Using novel methodology to quantify the functional coupling of cerebro-cerebellar circuitry during response-inhibition, our findings highlight that these loops play distinct roles in treatment response and could potentially serve as novel biomarkers for fast-acting antidepressant therapies in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Cerebelo/diagnóstico por imagen , Depresión , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
16.
J Neural Eng ; 18(5)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555822

RESUMEN

Objective. We present an easy-to-implement technique for accurate electrode placement over repeated transcranial electrical stimulation (tES) sessions across participants and time. tES is an emerging, non-invasive neuromodulation technique that delivers electrical stimulation using scalp electrodes.Approach.The tES electrode placement technique was developed during an exploratory clinical trial aimed at targeting a specific MNI-atlas cortical coordinate inN= 59 depressed participants (32 F, mean age: 31.1 ± 8.3 SD). Each participant completed 12 sessions of active or sham stimulation, administered using high-definition (HD) or conventional sized electrode montages placed according to the proposed technique. Neuronavigation data measuring the distances between the identified and the intended stimulation site, simulations, and cerebral blood flow (CBF) data at baseline and post-treatment were acquired to evaluate the targeting characteristics of the proposed technique.Main results.Neuronavigation measurements indicate accurate electrode placement to within 1 cm of the stimulation target on average across repeated sessions. Simulations predict that these placement characteristics result in minimal electric field differences at the stimulation target (>0.90 correlation, and <10% change in the modal electric field and targeted volume). Additionally, significant changes in %CBF (relative to baseline) under the stimulation target in the active stimulation group relative to sham confirmed that the proposed placement technique introduces minimal bias in the spatial location of the cortical coordinate ultimately targeted. Finally, we show proof of concept that the proposed technique provides similar accuracy of electrode placement at other cortical targets.Significance.For voxel-level cortical targets, existing techniques based on cranial landmarks are suboptimal. Our results show that the proposed electrode placement approach provides high consistency for the accurate targeting of such specific cortical regions. Overall, the proposed technique now enables the accurate targeting of locations not accessible with the existing 10-20 system such as scalp-projections of clinically-relevant cortical coordinates identified by brain mapping studies. Clinical trial ID: NCT03556124.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Adulto , Estimulación Eléctrica , Electrodos , Humanos , Adulto Joven
17.
Transl Psychiatry ; 11(1): 138, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627624

RESUMEN

Recent clinical trials of transcranial direct current stimulation (tDCS) in depression have shown contrasting results. Consequently, we used in-vivo neuroimaging to confirm targeting and modulation of depression-relevant neural circuitry by tDCS. Depressed participants (N = 66, Baseline Hamilton Depression Rating Scale (HDRS) 17-item scores ≥14 and <24) were randomized into Active/Sham and High-definition (HD)/Conventional (Conv) tDCS groups using a double-blind, parallel design, and received tDCS individually targeted at the left dorsolateral prefrontal cortex (DLPFC). In accordance with Ampere's Law, tDCS currents were hypothesized to induce magnetic fields at the stimulation-target, measured in real-time using dual-echo echo-planar-imaging (DE-EPI) MRI. Additionally, the tDCS treatment trial (consisting of 12 daily 20-min sessions) was hypothesized to induce cerebral blood flow (CBF) changes post-treatment at the DLPFC target and in the reciprocally connected anterior cingulate cortex (ACC), measured using pseudo-continuous arterial spin labeling (pCASL) MRI. Significant tDCS current-induced magnetic fields were observed at the left DLPFC target for both active stimulation montages (Brodmann's area (BA) 46: pHD = 0.048, Cohen's dHD = 0.73; pConv = 0.018, dConv = 0.86; BA 9: pHD = 0.011, dHD = 0.92; pConv = 0.022, dConv = 0.83). Significant longitudinal CBF increases were observed (a) at the left DLPFC stimulation-target for both active montages (pHD = 3.5E-3, dHD = 0.98; pConv = 2.8E-3, dConv = 1.08), and (b) at ACC for the HD-montage only (pHD = 2.4E-3, dHD = 1.06; pConv = 0.075, dConv = 0.64). These results confirm that tDCS-treatment (a) engages the stimulation-target, and (b) modulates depression-relevant neural circuitry in depressed participants, with stronger network-modulations induced by the HD-montage. Although not primary outcomes, active HD-tDCS showed significant improvements of anhedonia relative to sham, though HDRS scores did not differ significantly between montages post-treatment.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Depresión , Método Doble Ciego , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen
18.
Transl Psychiatry ; 10(1): 260, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732915

RESUMEN

Subanesthetic ketamine is found to induce fast-acting and pronounced antidepressant effects, even in treatment resistant depression (TRD). However, it remains unclear how ketamine modulates neural function at the brain systems-level to regulate emotion and behavior. Here, we examined treatment-related changes in the inhibitory control network after single and repeated ketamine therapy in TRD. Forty-seven TRD patients (mean age = 38, 19 women) and 32 healthy controls (mean age = 35, 18 women) performed a functional magnetic resonance imaging (fMRI) response inhibition task at baseline, and 37 patients completed the fMRI task and symptom scales again 24 h after receiving both one and four 0.5 mg/kg intravenous ketamine infusions. Analyses of fMRI data addressed effects of diagnosis, time, and differences between treatment remitters and non-remitters. Significant decreases in brain activation were observed in the inhibitory control network, including in prefrontal and parietal regions, and visual cortex following serial ketamine treatment, p < 0.05 corrected. Remitters were distinguished from non-remitters by having lower functional activation in the supplementary motor area (SMA) prior to treatment, which normalized towards controls following serial ketamine treatment. Results suggest that ketamine treatment leads to neurofunctional plasticity in executive control networks including the SMA during a response-inhibitory task. SMA changes relate to reductions in depressive symptoms, suggesting modulation of this network play an important role in therapeutic response. In addition, early changes in the SMA network during response inhibition appear predictive of overall treatment outcome, and may serve as a biomarker of treatment response.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Ketamina , Adulto , Antidepresivos/uso terapéutico , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Femenino , Humanos , Ketamina/uso terapéutico
19.
Eur Neuropsychopharmacol ; 33: 89-100, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32061453

RESUMEN

Ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depressive disorder (MDD). Yet, how single and repeated ketamine treatment induces brain systems-level neuroplasticity underlying symptom improvement is unknown. Advanced multiband imaging (MB) pseudo-continuous arterial spin labeling (pCASL) perfusion MRI data was acquired from patients with treatment resistant depression (TRD) (N = 22, mean age=35.2 ± 9.95 SD, 27% female) at baseline, and 24 h after receiving single, and four subanesthetic (0.5 mg/kg) intravenous ketamine infusions. Changes in global and regional CBF were compared across time points, and relationships with overall mood, anhedonia and apathy were examined. Comparisons between patients at baseline and controls (N = 18, mean age=36.11 ± 14.5 SD, 57% female) established normalization of treatment effects. Results showed increased regional CBF in the cingulate and primary and higher-order visual association regions after first ketamine treatment. Baseline CBF in the fusiform, and acute changes in CBF in visual areas were related to symptom improvement after single and repeated ketamine treatment, respectively. In contrast, after serial infusion therapy, decreases in regional CBF were observed in the bilateral hippocampus and right insula with ketamine treatment. Findings demonstrate that neurophysiological changes occurring with single and repeated ketamine treatment follow both a regional and temporal pattern including sensory and limbic regions. Initial changes are observed in the posterior cingulate and precuneus and primary and higher-order visual areas, which relate to clinical responses. However, repeated exposure to ketamine, though not relating to clinical outcome, appears to engage deeper limbic structures and insula. ClinicalTrials.gov: Biomarkers of Fast Acting Therapies in Major Depression, https://clinicaltrials.gov/ct2/show/NCT02165449, NCT02165449.


Asunto(s)
Trastorno Depresivo Mayor/diagnóstico por imagen , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Sistema Límbico/efectos de los fármacos , Sistema Límbico/diagnóstico por imagen , Sensación/efectos de los fármacos , Adulto , Afecto/efectos de los fármacos , Anhedonia , Apatía , Mapeo Encefálico , Circulación Cerebrovascular/efectos de los fármacos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/psicología , Trastorno Depresivo Resistente al Tratamiento , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Femenino , Humanos , Ketamina/uso terapéutico , Sistema Límbico/irrigación sanguínea , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/irrigación sanguínea , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Perfusión
20.
Artículo en Inglés | MEDLINE | ID: mdl-30658916

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is an effective treatment for severe depression and is shown to increase hippocampal volume and modulate hippocampal functional connectivity. Whether variations in hippocampal structural connectivity occur with ECT and relate to clinical response is unknown. METHODS: Patients with major depression (n = 36, 20 women, age 41.49 ± 13.57 years) underwent diffusion magnetic resonance imaging at baseline and after ECT. Control subjects (n = 32, 17 women, age 39.34 ± 12.27 years) underwent scanning twice. Functionally defined seeds in the left and right anterior hippocampus and probabilistic tractography were used to extract tract volume and diffusion metrics (fractional anisotropy and axial, radial, and mean diffusivity). Statistical analyses determined effects of ECT and time-by-response group interactions (>50% change in symptoms before and after ECT defined response). Differences between baseline measures across diagnostic groups and in association with treatment outcome were also examined. RESULTS: Significant effects of ECT (all p < .01) and time-by-response group interactions (all p < .04) were observed for axial, radial, and mean diffusivity for right, but not left, hippocampal pathways. Follow-up analyses showed that ECT-related changes occurred in responders only (all p < .01) as well as in relation to change in mood examined continuously (all p < .004). Baseline measures did not relate to symptom change or differ between patients and control subjects. All measures remained stable across time in control subjects. No significant effects were observed for fractional anisotropy and volume. CONCLUSIONS: Structural connectivity of hippocampal neural circuits changed with ECT and distinguished treatment responders. The findings suggested neurotrophic, glial, or inflammatory response mechanisms affecting axonal integrity.


Asunto(s)
Trastorno Depresivo Mayor/patología , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva , Hipocampo/patología , Sustancia Blanca/patología , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA