Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313686

RESUMEN

The γ-tubulin complex (γTuC) is a widely conserved microtubule nucleator, but some of its components, namely GCP4, GCP5 and GCP6 (also known as TUBGCP4, TUBGCP5 and TUBGCP6, respectively), have not been detected in Caenorhabditis elegans. Here, we identified two γTuC-associated proteins in C. elegans, GTAP-1 and GTAP-2, for which apparent orthologs were detected only in the genus Caenorhabditis. GTAP-1 and GTAP-2 were found to localize at centrosomes and the plasma membrane of the germline, and their centrosomal localization was interdependent. In early C. elegans embryos, whereas the conserved γTuC component MZT-1 (also known as MOZART1 and MZT1) was essential for the localization of centrosomal γ-tubulin, depletion of GTAP-1 and/or GTAP-2 caused up to 50% reduction of centrosomal γ-tubulin and precocious disassembly of spindle poles during mitotic telophase. In the adult germline, GTAP-1 and GTAP-2 contributed to efficient recruitment of the γTuC to the plasma membrane. Depletion of GTAP-1, but not of GTAP-2, severely disrupted both the microtubule array and the honeycomb-like structure of the adult germline. We propose that GTAP-1 and GTAP-2 are unconventional components of the γTuC that contribute to the organization of both centrosomal and non-centrosomal microtubules by targeting the γTuC to specific subcellular sites in a tissue-specific manner.


Asunto(s)
Caenorhabditis elegans , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Centrosoma/metabolismo , Células Germinativas/metabolismo , Huso Acromático/metabolismo
2.
FASEB J ; 37(4): e22851, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36935171

RESUMEN

Sarcopenia is a geriatric syndrome characterized by an age-related decline in skeletal muscle mass and strength. Here, we show that suppression of mitochondrial calcium uniporter (MCU)-mediated Ca2+ influx into mitochondria in the body wall muscles of the nematode Caenorhabditis elegans improved the sarcopenic phenotypes, blunting movement and mitochondrial structural and functional decline with age. We found that normally aged muscle cells exhibited elevated resting mitochondrial Ca2+ levels and increased mitophagy to eliminate damaged mitochondria. Similar to aging muscle, we found that suppressing MCU function in muscular dystrophy improved movement via reducing elevated resting mitochondrial Ca2+ levels. Taken together, our results reveal that elevated resting mitochondrial Ca2+ levels contribute to muscle decline with age and muscular dystrophy. Further, modulation of MCU activity may act as a potential pharmacological target in various conditions involving muscle loss.


Asunto(s)
Distrofias Musculares , Sarcopenia , Animales , Caenorhabditis elegans , Mitocondrias/patología , Músculo Esquelético/metabolismo , Sarcopenia/patología , Distrofias Musculares/metabolismo , Calcio/metabolismo
3.
Cell Tissue Res ; 394(1): 131-144, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37474621

RESUMEN

Pancreatic ß cell clusters produce insulin and play a central role in glucose homeostasis. The regenerative capacity of mammalian ß cells is limited and the loss of ß cells causes diabetes. In contrast, zebrafish ß cell clusters have a high regenerative capacity, making them an attractive model to study ß cell cluster regeneration. How zebrafish ß cell clusters regenerate, when the regeneration process is complete, and the identification of the cellular source of regeneration are fundamental questions that require investigation. Here, using larval and adult zebrafish, we demonstrate that pancreatic ß cell clusters undergo a two-step regeneration process, regenerating functionality and then ß cell numbers. Additionally, we found that all regenerating pancreatic ß cells arose from Neurod1-expressing cells and that cells from different lineages contribute to both functional and ß cell number recovery throughout their life. Furthermore, we found that during development and neogenesis, as well as regeneration, all ß cells undergo Neurod1expression in zebrafish. Together, these results shed light on the fundamental cellular mechanisms underlying ß cell cluster development, neogenesis, and regeneration.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Animales , Linaje de la Célula , Insulina , Mamíferos , Pez Cebra , Proteínas de Pez Cebra/metabolismo
4.
Biochem Biophys Res Commun ; 568: 68-75, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34192606

RESUMEN

Rett syndrome (OMIM #312750) is a developmental neurological disorder that is caused by a mutation in methyl-CpG-binding protein 2 (MeCP2). MeCP2 localizes to the nucleus, binds to methylated DNA, and regulates gene expression during neuronal development. MeCP2 assembles multiple protein complexes and its functions are controlled by interactions with its binding partners. Therefore, functional analysis of MeCP2 binding proteins is important. Previously, we proposed nine MeCP2-binding candidates in the cerebral cortex. In this study, we characterized and examined the function of the MeCP2 binding protein zinc finger protein 483 (ZNF483) to determine the significance of the MeCP2-ZNF483 interaction in neuronal development. Phylogenetic profiling revealed that the ZNF483 protein is broadly conserved in metazoans. In contrast, MeCP2 was obtained during evolution to chordates. To investigate ZNF483 functions, ZNF483-knockout P19 cell lines were established using the CRISPR-Cas9 system. These cell lines showed decreased cell proliferation, altered aggregate formation, decreased neuronal marker NeuN expression, and altered MeCP2 phosphorylation patterns. Notably, cytosolic localization of MeCP2 was enhanced by ZNF483-overexpression. Taken together, we propose that ZNF483 might be involved in the promotion of neuronal differentiation by regulating the subcellular localization of MeCP2 in P19 cells.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/metabolismo , Neurogénesis , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/análisis , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Neuronas/citología , Neuronas/metabolismo , Filogenia
5.
FASEB J ; 33(8): 9540-9550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162948

RESUMEN

Mitochondrial dysfunction impairs muscle health and causes subsequent muscle wasting. This study explores the role of mitochondrial dysfunction as an intramuscular signal for the extracellular matrix (ECM)-based proteolysis and, consequentially, muscle cell dystrophy. We found that inhibition of the mitochondrial electron transport chain causes paralysis as well as muscle structural damage in the nematode Caenorhabditis elegans. This was associated with a significant decline in collagen content. Both paralysis and muscle damage could be rescued with collagen IV overexpression, matrix metalloproteinase (MMP), and Furin inhibitors in Antimycin A-treated animal as well as in the C. elegans Duchenne muscular dystrophy model. Additionally, muscle cytosolic calcium increased in the Antimycin A-treated worms, and its down-regulation rescued the muscle damage, suggesting that calcium overload acts as one of the early triggers and activates Furin and MMPs for collagen degradation. In conclusion, we have established ECM degradation as an important pathway of muscle damage.-Sudevan, S., Takiura, M., Kubota, Y., Higashitani, N., Cooke, M., Ellwood, R. A., Etheridge, T., Szewczyk, N. J., Higashitani, A. Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Antimicina A/farmacología , Western Blotting , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Furina/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal , Distrofia Muscular de Duchenne
6.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717404

RESUMEN

Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order-disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT.


Asunto(s)
Simulación por Computador , Evolución Molecular , Factores de Transcripción Forkhead/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Rett/genética , Animales , Cordados/genética , Ontología de Genes , Humanos , Mutación Missense/genética , Especificidad de Órganos , Filogenia , Unión Proteica , Procesamiento Proteico-Postraduccional , Fracciones Subcelulares/metabolismo
7.
Dev Biol ; 397(2): 151-61, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25446539

RESUMEN

Organs are often formed by the extension and branching of epithelial tubes. An appropriate termination of epithelial tube extension is important for generating organs of the proper size and morphology. However, the mechanism by which epithelial tubes terminate their extension is mostly unknown. Here we show that the BED-finger domain protein MIG-39 acts to stop epithelial tube extension in Caenorhabditis elegans. The gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern during larval development and stop migrating at the young adult stage, generating a gonad with anterior and posterior U-shaped arms. In mig-39 mutants, however, DTCs overshot their normal stopping position. MIG-39 promoted the deceleration of DTCs, leading to the proper timing and positioning of the cessation of DTC migration. Among three Rac GTPase genes, mutations in ced-10 and rac-2 enhanced the overshoot of anterior DTCs, while they suppressed that of posterior DTCs of mig-39 mutants. On the other hand, the mutation in mig-2 suppressed both the anterior and posterior DTC defects of mig-39. Genetic analyses suggested that MIG-39 acts in parallel with Rac GTPases in stopping DTC migration. We propose a model in which the anterior and posterior DTCs respond in an opposite manner to the levels of Rac activities in the cessation of DTC migration.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Movimiento Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/fisiología , Gónadas/embriología , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Movimiento Celular/genética , Cartilla de ADN/genética , Proteínas de Unión al ADN/genética , Gónadas/citología , Inmunohistoquímica , Modelos Biológicos , Mutación/genética , Plásmidos/genética , Interferencia de ARN , Proteínas de Unión al GTP rac/genética
8.
Development ; 140(16): 3435-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23900541

RESUMEN

Cell migration and axon guidance require proper regulation of the actin cytoskeleton in response to extracellular guidance cues. Rho/Rac small GTPases are essential regulators of actin remodeling. Caenorhabditis elegans CED-10 is a Rac1 homolog that is required for various cellular morphological changes and migration events and is under the control of several guidance signaling pathways. There is still considerable uncertainty regarding events following the activation of guidance receptors by extracellular signals and the regulation of actin dynamics based on spatiotemporally restricted Rac activity. Here we show that the VPS9 domain protein RIN-1 acts as a novel effector for CED-10 in C. elegans. The orthologous mammalian Rin1 protein has previously been identified as an effector for Ras GTPase and is now known to function as a guanine nucleotide exchange factor for Rab5 GTPase. We found that RIN-1 specifically binds to the GTP-bound form of CED-10 and that mutations in rin-1 cause significant defects in migration and axon guidance of restricted neuronal cell types including AVM and HSN neurons, in contrast to the various defects observed in ced-10 mutants. Our analyses place RIN-1 in the Slit-Robo genetic pathway that regulates repulsive signaling for dorsoventral axon guidance. In rin-1 mutants, actin accumulated on both the ventral and dorsal sides of the developing HSN neuron, in contrast to its ventral accumulation in wild type. These results strongly suggest that RIN-1 acts as an effector for CED-10/Rac1 and regulates actin remodeling in response to restricted guidance cues.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Clonación Molecular , Datos de Secuencia Molecular , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Seudópodos/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/genética
9.
Dev Biol ; 391(1): 43-53, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24721716

RESUMEN

The PAF1 complex (PAF1C) is an evolutionarily conserved protein complex involved in transcriptional regulation and chromatin remodeling. How the PAF1C is involved in animal development is still not well understood. Here, we report that, in the nematode Caenorhabditis elegans, the PAF1C is involved in epidermal morphogenesis in late embryogenesis. From an RNAi screen we identified the C. elegans ortholog of a component of the PAF1C, CTR-9, as a gene whose depletion caused various defects during embryonic epidermal morphogenesis, including epidermal cell positioning, ventral enclosure and epidermal elongation. RNAi of orthologs of other four components of the PAF1C (PAFO-1, LEO-1, CDC-73 and RTFO-1) caused similar epidermal defects. In these embryos, whereas the number and cell fate determination of epidermal cells were apparently unaffected, their position and shape were severely disorganized. PAFO-1::mCherry, mCherry::LEO-1 and GFP::RTFO-1 driven by the authentic promoters were detected in the nuclei of a wide range of cells. Nuclear localization of GFP::RTFO-1 was independent of other PAF1C components, while PAFO-1::mCherry and mCherry::LEO-1 dependent on other components except RTFO-1. Epidermis-specific expression of mCherry::LEO-1 rescued embryonic lethality of the leo-1 deletion mutant. Thus, although the PAF1C is universally expressed in C. elegans embryos, its epidermal function is crucial for the viability of this animal.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Cromatina/química , Actinas/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Epidermis/embriología , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Morfogénesis , Mutación , Fenotipo , Regiones Promotoras Genéticas , Interferencia de ARN , Factores de Tiempo
10.
Sci Rep ; 14(1): 4813, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413743

RESUMEN

Chondroitin, a class of glycosaminoglycan polysaccharides, is found as proteoglycans in the extracellular matrix, plays a crucial role in tissue morphogenesis during development and axonal regeneration. Ingestion of chondroitin prolongs the lifespan of C. elegans. However, the roles of endogenous chondroitin in regulating lifespan and healthspan mostly remain to be investigated. Here, we demonstrate that a gain-of-function mutation in MIG-22, the chondroitin polymerizing factor (ChPF), results in elevated chondroitin levels and a significant extension of both the lifespan and healthspan in C. elegans. Importantly, the remarkable longevity observed in mig-22(gf) mutants is dependent on SQV-5/chondroitin synthase (ChSy), highlighting the pivotal role of chondroitin in controlling both lifespan and healthspan. Additionally, the mig-22(gf) mutation effectively suppresses the reduced healthspan associated with the loss of MIG-17/ADAMTS metalloprotease, a crucial for factor in basement membrane (BM) remodeling. Our findings suggest that chondroitin functions in the control of healthspan downstream of MIG-17, while regulating lifespan through a pathway independent of MIG-17.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Condroitín/metabolismo , Longevidad/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Glicosaminoglicanos/metabolismo , Metaloendopeptidasas/metabolismo , Desintegrinas/metabolismo
11.
Genes Genomics ; 44(3): 343-357, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34843089

RESUMEN

BACKGROUND: Caenorhabditis elegans encodes three class I histone deacetylases (HDACs), HDA-1, HDA-2, and HDA-3. Although HDA-1 is known to be involved in embryogenesis, the regulatory roles of HDA-2 and HDA-3 in embryonic development remain unexplored. OBJECTIVE: To elucidate the functional roles of the three class I HDACs in C. elegans embryonic development. METHODS: The roles of Class I HDACs, HDA-1, HDA-2, and HDA-3 in Caenorhabditis elegans during embryogenesis were investigated through the analysis of embryonic lethality via gene knockdown or deletion mutants. Additionally, the size of these knockdown and mutant eggs was observed using a differential interference contrast microscope. Finally, expression pattern and tissue-specific role of hda-2 and transcriptome of the hda-2 mutant were analyzed. RESULTS: Here, we report that HDA-1 and HDA-2, but not HDA-3, play essential roles in Caenorhabditis elegans embryonic development. Our observations of the fertilized egg size variance demonstrated that HDA-2 is involved in regulating the size of fertilized eggs. Combined analysis of expression patterns and sheath cell-specific rescue experiments indicated that the transgenerational role of HDA-2 is involved in the viability of embryonic development and fertilized egg size regulation. Furthermore, transcriptome analysis of hda-2 mutant embryos implies that HDA-2 is involved in epigenetic regulation of embryonic biological processes by downregulating and upregulating the gene expression. CONCLUSION: Our finding suggests that HDA-2 regulates the embryonic development in Caenorhabditis elegans by controling a specific subset of genes, and this function might be mediated by transgenerational epigenetic effect.


Asunto(s)
Caenorhabditis elegans , Cigoto , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética , Histona Desacetilasas/genética , Cigoto/metabolismo
12.
Front Med (Lausanne) ; 9: 824622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178414

RESUMEN

SARS-CoV-2 is the causative agent of a new type of coronavirus infection, COVID-19, which has rapidly spread worldwide. The overall genome sequence homology between SARS-CoV-2 and SARS-CoV is 79%. However, the homology of the ORF8 protein between these two coronaviruses is low, at ~26%. Previously, it has been suggested that infection by the ORF8-deleted variant of SARS-CoV-2 results in less severe symptoms than in the case of wild-type SARS-CoV-2. Although we found that ORF8 is involved in the proteasome autoimmunity system, the precise role of ORF8 in infection and pathology has not been fully clarified. In this study, we determined a new network of ORF8-interacting proteins by performing in silico analysis of the binding proteins against the previously described 47 ORF8-binding proteins. We used as a dataset 431 human protein candidates from Uniprot that physically interacted with 47 ORF8-binding proteins, as identified using STRING. Homology and phylogenetic profile analyses of the protein dataset were performed on 446 eukaryotic species whose genome sequences were available in KEGG OC. Based on the phylogenetic profile results, clustering analysis was performed using Ward's method. Our phylogenetic profiling showed that the interactors of the ORF8-interacting proteins were clustered into three classes that were conserved across chordates (Class 1: 152 proteins), metazoans (Class 2: 163 proteins), and eukaryotes (Class 3: 114 proteins). Following the KEGG pathway analysis, classification of cellular localization, tissue-specific expression analysis, and a literature study on each class of the phylogenetic profiling cluster tree, we predicted that the following: protein members in Class 1 could contribute to COVID-19 pathogenesis via complement and coagulation cascades and could promote sarcoidosis; the members of Class 1 and 2, together, may contribute to the downregulation of Interferon-ß; and Class 3 proteins are associated with endoplasmic reticulum stress and the degradation of human leukocyte antigen.

13.
J Biol Chem ; 285(44): 34155-67, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20729547

RESUMEN

Chondroitin sulfate (CS) is a polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and d-glucuronic acid residues, modified with sulfated residues at various positions. To date six glycosyltransferases for chondroitin synthesis have been identified, and the complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 (ChSy-1) and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is assumed to play a major role in CS biosynthesis. We found an alternative splice variant of mouse CSS2 in a data base that lacks the N-terminal transmembrane domain, contrasting to the original CSS2. Here, we investigated the roles of CSS2 variants. Both the original enzyme and the splice variant, designated CSS2A and CSS2B, respectively, were expressed at different levels and ratios in tissues. Western blot analysis of cultured mouse embryonic fibroblasts confirmed that both enzymes were actually synthesized as proteins and were localized in both the endoplasmic reticulum and the Golgi apparatus. Pulldown assays revealed that either of CSS2A, CSS2B, and CSS1/ChSy-1 heterogeneously and homogeneously interacts with each other, suggesting that they form a complex of multimers. In vitro glycosyltransferase assays demonstrated a reduced glucuronyltransferase activity in CSS2B and no polymerizing activity in CSS2B co-expressed with CSS1, in contrast to CSS2A co-expressed with CSS1. Radiolabeling analysis of cultured COS-7 cells overexpressing each variant revealed that, whereas CSS2A facilitated CS biosynthesis, CSS2B inhibited it. Molecular modeling of CSS2A and CSS2B provided support for their properties. These findings, implicating regulation of CS chain polymerization by CSS2 variants, provide insight in elucidating the mechanisms of CS biosynthesis.


Asunto(s)
Hexosiltransferasas/fisiología , N-Acetilgalactosaminiltransferasas/química , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Glicosaminoglicanos/química , Hexosiltransferasas/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Células 3T3 NIH , Homología de Secuencia de Aminoácido
14.
Nat Cell Biol ; 6(1): 31-7, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14688791

RESUMEN

In the nematode Caenorhabditis elegans, the gonad acquires two U-shaped arms through the directed migration of its distal tip cells (DTCs), which are located at the tip of the growing gonad arms. A member of the ADAM (a disintegrin and metalloprotease) family, MIG-17, regulates directional migration of DTCs: MIG-17 is synthesized and secreted from the muscle cells of the body wall, and diffuses to the gonad where it is required for DTC migration. The mig-23 mutation causes defective migration of DTCs and interacts genetically with mig-17. Here, we report that mig-23 encodes a membrane-bound nucleoside diphosphatase (NDPase) required for glycosylation and proper localization of MIG-17. Our findings indicate that an NDPase affects organ morphogenesis through glycosylation of the MIG-17 ADAM protease.


Asunto(s)
Ácido Anhídrido Hidrolasas/aislamiento & purificación , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Desintegrinas/metabolismo , Gónadas/embriología , Metaloendopeptidasas/metabolismo , Organogénesis/fisiología , Ácido Anhídrido Hidrolasas/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases/genética , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Diferenciación Celular/genética , Linaje de la Célula/genética , Movimiento Celular/fisiología , ADN Complementario/análisis , ADN Complementario/genética , Glicoproteínas/metabolismo , Glicosilación , Gónadas/citología , Gónadas/metabolismo , Datos de Secuencia Molecular , Células Musculares/metabolismo , Mutación/genética , Células Madre/citología , Células Madre/metabolismo
15.
Proc Natl Acad Sci U S A ; 105(52): 20804-9, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19104038

RESUMEN

Mutations in the a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS) family of secreted proteases cause diseases linked to ECM abnormalities. However, the mechanisms by which these enzymes modulate the ECM during development are mostly unexplored. The Caenorhabditis elegans MIG-17/ADAMTS protein is secreted from body wall muscle cells and localizes to the basement membrane (BM) of the developing gonad where it controls directional migration of gonadal leader cells. Here we show that specific amino acid changes in the ECM proteins fibulin-1C (FBL-1C) and type IV collagen (LET-2) result in bypass of the requirement for MIG-17 activity in gonadal leader cell migration in a nidogen (NID-1)-dependent and -independent manner, respectively. The MIG-17, FBL-1C and LET-2 activities are required for proper accumulation of NID-1 at the gonadal BM. However, mutant FBL-1C or LET-2 in the absence of MIG-17 promotes NID-1 localization. Furthermore, overexpression of NID-1 in mig-17 mutants substantially rescues leader cell migration defects. These results suggest that functional interactions among BM molecules are important for MIG-17 control of gonadal leader cell migration. We propose that FBL-1C and LET-2 act downstream of MIG-17-dependent proteolysis to recruit NID-1 and that LET-2 also activates a NID-1-independent pathway, thereby inducing the remodeling of the BM required for directional control of leader cell migration.


Asunto(s)
Membrana Basal/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Movimiento Celular/fisiología , Desintegrinas/metabolismo , Gónadas/enzimología , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Animales , Membrana Basal/citología , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Desintegrinas/genética , Femenino , Gónadas/citología , Masculino , Glicoproteínas de Membrana/genética , Metaloendopeptidasas/genética , Células Musculares/citología , Células Musculares/enzimología , Mutación , Transporte de Proteínas/fisiología
16.
Evol Bioinform Online ; 17: 11769343211003079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33795929

RESUMEN

ORF8 is a highly variable genomic region of SARS-CoV-2. Although non-essential and the precise functions are unknown, it has been suggested that this protein assists in SARS-CoV-2 replication in the early secretory pathway and in immune evasion. We utilized the binding partners of SARS-CoV-2 proteins in human HEK293T cells and performed genome-wide phylogenetic profiling and clustering analyses in 446 eukaryotic species to predict and discover ORF8 binding partners that share associated functional mechanisms based on co-evolution. Results classified 47 ORF8 binding partner proteins into 3 clusters (groups 1-3), which were conserved in vertebrates (group 1), metazoan (group 2), and eukaryotes (group 3). Gene ontology analysis indicated that group 1 had no significant associated biological processes, while groups 2 and 3 were associated with glycoprotein biosynthesis process and ubiquitin-dependent endoplasmic reticulum-associated degradation pathways, respectively. Collectively, our results classified potential genes that might be associated with SARS-CoV-2 viral pathogenesis, specifically related to acute respiratory distress syndrome, and the secretory pathway. Here, we discuss the possible role of ORF8 in viral pathogenesis and in assisting viral replication and immune evasion via secretory pathway, as well as the possible factors associated with the rapid evolution of ORF8.

17.
Sci Rep ; 11(1): 22370, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785759

RESUMEN

Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.


Asunto(s)
Orientación del Axón , Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas del Tejido Nervioso/genética
18.
Endocrinology ; 162(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675223

RESUMEN

Hypothyroidism is a common pathological condition characterized by insufficient activity of the thyroid hormones (THs), thyroxine (T4), and 3,5,3'-triiodothyronine (T3), in the whole body or in specific tissues. Hypothyroidism is associated with inadequate development of the intestine as well as gastrointestinal diseases. We used a zebrafish model of hypothyroidism to identify and characterize TH-modulated genes and cellular pathways controlling intestine development. In the intestine of hypothyroid juveniles and adults, the number of mucus-secreting goblet cells was reduced, and this phenotype could be rescued by T3 treatment. Transcriptome profiling revealed dozens of differentially expressed genes in the intestine of hypothyroid adults compared to controls. Notably, the expression of genes encoding to Fgf19 and its receptor Fgfr4 was markedly increased in the intestine of hypothyroid adults, and treatment with T3 normalized it. Blocking fibroblast growth factor (FGF) signaling, using an inducible dominant-negative Fgfr transgenic line, rescued the number of goblet cells in hypothyroid adults. These results show that THs inhibit the Fgf19-Fgfr4 signaling pathway, which is associated with inhibition of goblet cell differentiation in hypothyroidism. Both the TH and Fgf19-Fgfr4 signaling pathways can be pharmaceutical targets for the treatment of TH-related gastrointestinal diseases.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Células Caliciformes/metabolismo , Hipotiroidismo/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/genética , Células Caliciformes/citología , Humanos , Hipotiroidismo/genética , Hipotiroidismo/fisiopatología , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
20.
Infect Genet Evol ; 81: 104272, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32142938

RESUMEN

The seventh novel human infecting Betacoronavirus that causes pneumonia (2019 novel coronavirus, 2019-nCoV) originated in Wuhan, China. The evolutionary relationship between 2019-nCoV and the other human respiratory illness-causing coronavirus is not closely related. We sought to characterize the relationship of the translated proteins of 2019-nCoV with other species of Orthocoronavirinae. A phylogenetic tree was constructed from the genome sequences. A cluster tree was developed from the profiles retrieved from the presence and absence of homologs of ten 2019-nCoV proteins. The combined data were used to characterize the relationship of the translated proteins of 2019-nCoV to other species of Orthocoronavirinae. Our analysis reliably suggests that 2019-nCoV is most closely related to BatCoV RaTG13 and belongs to subgenus Sarbecovirus of Betacoronavirus, together with SARS coronavirus and Bat-SARS-like coronavirus. The phylogenetic profiling cluster of homolog proteins of one annotated 2019-nCoV protein against other genome sequences revealed two clades of ten 2019-nCoV proteins. Clade 1 consisted of a group of conserved proteins in Orthocoronavirinae comprising Orf1ab polyprotein, Nucleocapsid protein, Spike glycoprotein, and Membrane protein. Clade 2 comprised six proteins exclusive to Sarbecovirus and Hibecovirus. Two of six Clade 2 nonstructural proteins, NS7b and NS8, were exclusively conserved among 2019-nCoV, BetaCoV_RaTG, and BatSARS-like Cov. NS7b and NS8 have previously been shown to affect immune response signaling in the SARS-CoV experimental model. Thus, we speculated that knowledge of the functional changes in the NS7b and NS8 proteins during evolution may provide important information to explore the human infective property of 2019-nCoV.


Asunto(s)
Betacoronavirus/clasificación , Betacoronavirus/genética , Evolución Molecular , Filogenia , Proteínas no Estructurales Virales/genética , Coronaviridae/clasificación , Coronaviridae/genética , ARN Polimerasa Dependiente de ARN de Coronavirus , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA