RESUMEN
Background Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 requires multiparametric MRI of the prostate, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging sequences; however, the contribution of DCE imaging remains unclear. Purpose To assess whether DCE imaging in addition to apparent diffusion coefficient (ADC) and normalized T2 values improves PI-RADS version 2.0 for prediction of clinically significant prostate cancer (csPCa). Materials and Methods In this retrospective study, clinically reported PI-RADS lesions in consecutive men who underwent 3-T multiparametric MRI (T2-weighted, DWI, and DCE MRI) from May 2015 to September 2016 were analyzed quantitatively and compared with systematic and targeted MRI-transrectal US fusion biopsy. The normalized T2 signal (nT2), ADC measurement, mean early-phase DCE signal (mDCE), and heuristic DCE parameters were calculated. Logistic regression analysis indicated the most predictive DCE parameters for csPCa (Gleason grade group ≥2). Receiver operating characteristic parameter models were compared using the Obuchowski test. Recursive partitioning analysis determined ADC and mDCE value ranges for combined use with PI-RADS. Results Overall, 260 men (median age, 64 years [IQR, 58-69 years]) with 432 lesions (csPCa [n = 152] and no csPCa [n = 280]) were included. The mDCE parameter was predictive of csPCa when accounting for the ADC and nT2 parameter in the peripheral zone (odds ratio [OR], 1.76; 95% CI: 1.30, 2.44; P = .001) but not the transition zone (OR, 1.17; 95% CI: 0.81, 1.69; P = .41). Recursive partitioning analysis selected an ADC cutoff of 0.897 × 10-3 mm2/sec (P = .04) as a classifier for peripheral zone lesions with a PI-RADS score assessed on the ADC map (hereafter, ADC PI-RADS) of 3. The mDCE parameter did not differentiate ADC PI-RADS 3 lesions (P = .11), but classified lesions with ADC PI-RADS scores greater than 3 with low ADC values (less than 0.903 × 10-3 mm2/sec, P < .001) into groups with csPCa rates of 70% and 97% (P = .008). A lesion size cutoff of 1.5 cm and qualitative DCE parameters were not defined as classifiers according to recursive partitioning (P > .05). Conclusion Quantitative or qualitative dynamic contrast-enhanced MRI was not relevant for Prostate Imaging Reporting and Data System (PI-RADS) 3 lesion risk stratification, while quantitative apparent diffusion coefficient (ADC) values were helpful in upgrading PI-RADS 3 and PI-RADS 4 lesions. Quantitative ADC measurement may be more important for risk stratification than current methods in future versions of PI-RADS. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Goh in this issue.
Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética , Próstata/patologíaRESUMEN
PURPOSE: Intravoxel incoherent motion (IVIM) studies are performed with different acquisition protocols. Comparing them requires knowledge of echo time (TE) dependencies. The TE-dependence of the biexponential perfusion fraction f is well-documented, unlike that of its triexponential counterparts f1 and f2 and the biexponential and triexponential pseudodiffusion coefficients D* , D1∗ , and D2∗ . The purpose was to investigate the TE-dependence of these parameters and to check whether the triexponential pseudodiffusion compartments are associated with arterial and venous blood. METHODS: Fifteen healthy volunteers (19-58 y; mean: 24.7 y) underwent diffusion-weighted imaging of the abdomen with 24 b-values (0.2-800 s/mm2 ) at TEs of 45, 60, 75, and 90 ms. Regions of interest (ROIs) were manually drawn in the liver. One set of bi- and triexponential IVIM parameters per volunteer and TE was determined. The TE-dependence was assessed with the Kruskal-Wallis test. RESULTS: TE-dependence was observed for f (P < .001), f1 (P = .001), and f2 (P < .001). Their median values at the four measured TEs were: f: 0.198/0.240/0.274/0.359, f1 : 0.113/0.139/0.146/0.205, f2 : 0.115/0.155/0.182/0.194. D, D* , D1∗ , and D2∗ showed no significant TE-dependence. Their values were: diffusion coefficient D (10-4 mm2 /s): 9.45/9.63/9.75/9.41, biexponential D* (10-2 mm2 /s): 5.26/5.52/6.13/5.82, triexponential D1∗ (10-2 mm2 /s): 1.73/2.91/2.25/2.51, triexponential D2∗ (mm2 /s): 0.478/1.385/0.616/0.846. CONCLUSION: f1 and f2 show similar TE-dependence as f, ie, increase with rising TE; an effect that must be accounted for when comparing different studies. The diffusion and pseudodiffusion coefficients might be compared without TE correction. Because of the similar TE-dependence of f1 and f2 , the triexponential pseudodiffusion compartments are most probably not associated to venous and arterial blood.
Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética , Abdomen , Humanos , Hígado/diagnóstico por imagen , Movimiento (Física) , Reproducibilidad de los ResultadosRESUMEN
Since the seminal works by Brodmann and contemporaries, it is well-known that different brain regions exhibit unique cytoarchitectonic and myeloarchitectonic features. Transferring the approach of classifying brain tissues - and other tissues - based on their intrinsic features to the realm of magnetic resonance (MR) is a longstanding endeavor. In the 1990s, atlas-based segmentation replaced earlier multi-spectral classification approaches because of the large overlap between the class distributions. Here, we explored the feasibility of performing global brain classification based on intrinsic MR features, and used several technological advances: ultra-high field MRI, q-space trajectory diffusion imaging revealing voxel-intrinsic diffusion properties, chemical exchange saturation transfer and semi-solid magnetization transfer imaging as a marker of myelination and neurochemistry, and current neural network architectures to analyze the data. In particular, we used the raw image data as well to increase the number of input features. We found that a global brain classification of roughly 97 brain regions was feasible with gross classification accuracy of 60%; and that mapping from voxel-intrinsic MR data to the brain region to which the data belongs is possible. This indicates the presence of unique MR signals of different brain regions, similar to their cytoarchitectonic and myeloarchitectonic fingerprints.
Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Análisis de Datos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Adulto , Anciano , Mapeo Encefálico/clasificación , Femenino , Humanos , Aprendizaje Automático/clasificación , Imagen por Resonancia Magnética/clasificación , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
PURPOSE: Water exchange between the intracellular and extracellular space can be measured using apparent exchange rate (AXR) imaging. The aim of this study was to investigate the relationship between the measured AXR and the geometry of diffusion restrictions, membrane permeability, and the real exchange rate, as well as to explore the applicability of AXR for typical human measurement settings. METHODS: The AXR measurements and the underlying exchange rates were simulated using the Monte Carlo method with different geometries, size distributions, packing densities, and a broad range of membrane permeabilities. Furthermore, the influence of SNR and sequence parameters was analyzed. RESULTS: The estimated AXR values correspond to the simulated values and show the expected proportionality to membrane permeability, except for fast exchange (ie, AXR>20-30s-1 ) and small packing densities. Moreover, it was found that the duration of the filter gradient must be shorter than 2·AXR-1 . In cell size and permeability distributions, AXR depends on the average surface-to-volume ratio, permeability, and the packing density. Finally, AXR can be reliably determined in the presence of orientation dispersion in axon-like structures with sufficient gradient sampling (ie, 30 gradient directions). CONCLUSION: Currently used experimental settings for in vivo human measurements are well suited for determining AXR, with the exception of single-voxel analysis, due to limited SNR. The detection of changes in membrane permeability in diseased tissue is nonetheless challenging because of the AXR dependence on further factors, such as packing density and geometry, which cannot be disentangled without further knowledge of the underlying cell structure.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Agua , Permeabilidad de la Membrana Celular , Difusión , Humanos , Método de MontecarloRESUMEN
PURPOSE: To find an optimized b-value distribution for reproducible triexponential intravoxel incoherent motion (IVIM) exams in the liver. METHODS: A numeric optimization of b-value distributions was performed using the triexponential IVIM equation and 27 different IVIM parameter sets. Starting with an initially optimized distribution of 6 b-values, the number of b-values was increased stepwise. Each new b-value was chosen from a set of 64 predefined b-values based on the computed summed relative mean error of the fitted triexponential IVIM parameters. This process was repeated for up to 100 b-values. In simulations and in vivo measurements, optimized b-value distributions were compared to 4 representative distributions found in literature. RESULTS: The first 16 optimized b-values were 0, 0.3, 0.3, 70, 200, 800, 70, 1, 3.5, 5, 70, 1.2, 6, 45, 1.5, and 60 in units of s/mm2 . Low b-values were much more frequent than high b-values. The optimized b-value distribution resulted in a higher fit stability compared to distributions used in literature in both, simulation and in vivo measurements. Using more than 6 b-values, ideally 16 or more, increased the fit stability considerably. CONCLUSION: Using optimized b-values, the fit uncertainty in triexponential IVIM can be largely reduced. Ideally, 16 or more b-values should be acquired.
Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética , Simulación por Computador , Hígado/diagnóstico por imagen , Movimiento (Física)RESUMEN
Background MRI with contrast material enhancement is the imaging modality of choice to evaluate sonographically indeterminate adnexal masses. The role of diffusion-weighted MRI, however, remains controversial. Purpose To evaluate the diagnostic performance of ultra-high-b-value diffusion kurtosis MRI in discriminating benign and malignant ovarian lesions. Materials and Methods This prospective cohort study evaluated consecutive women with sonographically indeterminate adnexal masses between November 2016 and December 2018. MRI at 3.0 T was performed, including diffusion-weighted MRI (b values of 0-2000 sec/mm2). Lesions were segmented on b of 1500 sec/mm2 by two readers in consensus and an additional independent reader by using full-lesion segmentations on a single transversal slice. Apparent diffusion coefficient (ADC) calculation and kurtosis fitting were performed. Differences in ADC, kurtosis-derived ADC (Dapp), and apparent kurtosis coefficient (Kapp) between malignant and benign lesions were assessed by using a logistic mixed model. Area under the receiver operating characteristic curve (AUC) for ADC, Dapp, and Kapp to discriminate malignant from benign lesions was calculated, as was specificity at a sensitivity level of 100%. Results from two independent reads were compared. Histopathologic analysis served as the reference standard. Results A total of 79 ovarian lesions in 58 women (mean age ± standard deviation, 48 years ± 14) were evaluated. Sixty-two (78%) lesions showed benign and 17 (22%) lesions showed malignant histologic findings. ADC and Dapp were lower and Kapp was higher in malignant lesions: median ADC, Dapp, and Kapp were 0.74 µm2/msec (range, 0.52-1.44 µm2/msec), 0.98 µm2/msec (range, 0.63-2.12 µm2/msec), and 1.01 (range, 0.69-1.30) for malignant lesions, and 1.13 µm2/msec (range, 0.35-2.63 µm2/msec), 1.45 µm2/msec (range, 0.44-3.34 µm2/msec), and 0.65 (range, 0.44-1.43) for benign lesions (P values of .01, .02, < .001, respectively). AUC for Kapp of 0.85 (95% confidence interval: 0.77, 0.94) was higher than was AUC from ADC of 0.78 (95% confidence interval: 0.67, 0.89; P = .047). Conclusion Diffusion-weighted MRI by using quantitative kurtosis variables is superior to apparent diffusion coefficient values in discriminating benign and malignant ovarian lesions and might be of future help in clinical practice, especially in patients with contraindication to contrast media application. © RSNA, 2020 Online supplemental material is available for this article.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Ováricas/diagnóstico por imagen , Ovario/diagnóstico por imagen , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/patología , Ovario/patología , Estudios Prospectivos , Sensibilidad y EspecificidadRESUMEN
PURPOSE: Diffusion times longer than 50 ms are typically probed with stimulated-echo sequences. Varying the diffusion time in stimulated-echo sequences affects the T1 weighting of subcompartments, complicating the analysis of diffusion time dependence. Although inversion recovery preparation could be used to change the T1 weighting, it cannot ensure equal T1 weighting at arbitrary mixing times. In this article, a sequence that ensures constant T1 weighting over a wide range of diffusion times is presented. METHODS: The proposed sequence features 2 independent longitudinal storage periods: TM1 and TM2 . Diffusion encoding is performed during TM1 , effectively coupling the diffusion time and TM1 . Equal T1 weighting at arbitrary diffusion times is realized by keeping the total mixing time TM1 + TM2 constant. The sequence was compared with conventional stimulated-echo measurements of diffusion in a 2-compartment phantom consisting of distilled water and paraffinum perliquidum. Additionally, in vivo DTI of the brain was carried out for 8 healthy volunteers with diffusion times ranging from 50 to 500 ms. RESULTS: Diffusion time dependence of the axial and radial diffusivity was detected in the brain. Both sequences resulted in almost identical diffusivities in white matter. In regions containing partial volumes of gray and white matter, a dependency on T1 weighting was observed. CONCLUSION: In accordance with previous studies, little variance of T1 values appeared to be present in healthy white matter. However, this is likely different in diseased tissue. Here, the proposed sequence can be effective in differentiating between diffusion time dependence and T1 weighting effects.
Asunto(s)
Teofilina , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética , Humanos , Sustancia Blanca/diagnóstico por imagenRESUMEN
Background Men suspected of having clinically significant prostate cancer (sPC) increasingly undergo prostate MRI. The potential of deep learning to provide diagnostic support for human interpretation requires further evaluation. Purpose To compare the performance of clinical assessment to a deep learning system optimized for segmentation trained with T2-weighted and diffusion MRI in the task of detection and segmentation of lesions suspicious for sPC. Materials and Methods In this retrospective study, T2-weighted and diffusion prostate MRI sequences from consecutive men examined with a single 3.0-T MRI system between 2015 and 2016 were manually segmented. Ground truth was provided by combined targeted and extended systematic MRI-transrectal US fusion biopsy, with sPC defined as International Society of Urological Pathology Gleason grade group greater than or equal to 2. By using split-sample validation, U-Net was internally validated on the training set (80% of the data) through cross validation and subsequently externally validated on the test set (20% of the data). U-Net-derived sPC probability maps were calibrated by matching sextant-based cross-validation performance to clinical performance of Prostate Imaging Reporting and Data System (PI-RADS). Performance of PI-RADS and U-Net were compared by using sensitivities, specificities, predictive values, and Dice coefficient. Results A total of 312 men (median age, 64 years; interquartile range [IQR], 58-71 years) were evaluated. The training set consisted of 250 men (median age, 64 years; IQR, 58-71 years) and the test set of 62 men (median age, 64 years; IQR, 60-69 years). In the test set, PI-RADS cutoffs greater than or equal to 3 versus cutoffs greater than or equal to 4 on a per-patient basis had sensitivity of 96% (25 of 26) versus 88% (23 of 26) at specificity of 22% (eight of 36) versus 50% (18 of 36). U-Net at probability thresholds of greater than or equal to 0.22 versus greater than or equal to 0.33 had sensitivity of 96% (25 of 26) versus 92% (24 of 26) (both P > .99) with specificity of 31% (11 of 36) versus 47% (17 of 36) (both P > .99), not statistically different from PI-RADS. Dice coefficients were 0.89 for prostate and 0.35 for MRI lesion segmentation. In the test set, coincidence of PI-RADS greater than or equal to 4 with U-Net lesions improved the positive predictive value from 48% (28 of 58) to 67% (24 of 36) for U-Net probability thresholds greater than or equal to 0.33 (P = .01), while the negative predictive value remained unchanged (83% [25 of 30] vs 83% [43 of 52]; P > .99). Conclusion U-Net trained with T2-weighted and diffusion MRI achieves similar performance to clinical Prostate Imaging Reporting and Data System assessment. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Padhani and Turkbey in this issue.
Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Neoplasias de la Próstata/patología , Anciano , Biopsia , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/diagnóstico por imagen , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Studies on intravoxel incoherent motion (IVIM) imaging are carried out with different acquisition protocols. PURPOSE: To investigate the dependence of IVIM parameters on the B0 field strength when using a bi- or triexponential model. STUDY TYPE: Prospective. STUDY POPULATION: 20 healthy volunteers (age: 19-28 years). FIELD STRENGTH/SEQUENCE: Volunteers were examined at two field strengths (1.5 and 3T). Diffusion-weighted images of the abdomen were acquired at 24 b-values ranging from 0.2 to 500 s/mm2 . ASSESSMENT: ROIs were manually drawn in the liver. Data were fitted with a bi- and a triexponential IVIM model. The resulting parameters were compared between both field strengths. STATISTICAL TESTS: One-way analysis of variance (ANOVA) and Kruskal-Wallis test were used to test the obtained IVIM parameters for a significant field strength dependency. RESULTS: At b-values below 6 s/mm2 , the triexponential model provided better agreement with the data than the biexponential model. The average tissue diffusivity was D = 1.22/1.00 µm2 /msec at 1.5/3T. The average pseudodiffusion coefficients for the biexponential model were D* = 308/260 µm2 /msec at 1.5/3T; and for the triexponential model D1* = 81.3/65.9 µm2 /msec, D2* = 2453/2333 µm2 /msec at 1.5/3T. The average perfusion fractions for the biexponential model were f = 0.286/0.303 at 1.5/3T; and for the triexponential model f1 = 0.161/0.174 and f2 = 0.152/0.159 at 1.5/3T. A significant B0 dependence was only found for the biexponential pseudodiffusion coefficient (ANOVA/KW P = 0.037/0.0453) and tissue diffusivity (ANOVA/KW: P < 0.001). DATA CONCLUSION: Our experimental results suggest that triexponential pseudodiffusion coefficients and perfusion fractions obtained at different field strengths could be compared across different studies using different B0 . However, it is recommended to take the field strength into account when comparing tissue diffusivities or using the biexponential IVIM model. Considering published values for oxygenation-dependent transversal relaxation times of blood, it is unlikely that the two blood compartments of the triexponential model represent venous and arterial blood. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:1883-1892.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/anatomía & histología , Adulto , Imagen Eco-Planar/métodos , Femenino , Humanos , Masculino , Movimiento (Física) , Estudios Prospectivos , Adulto JovenRESUMEN
PURPOSE: MRI has limited ability to detect multifocal disease or the full extent of prostate involvement with clinically significant prostate cancer (sPC). We compare the spatial co-localization at sextant resolution of MRI lesions and histopathological mapping by combined targeted and extended systematic biopsies. MATERIALS AND METHODS: Sextants were mapped for sPC (ISUP group ≥ 2) by 24-core transperineal systematic biopsies in 316 patients with suspicion for sPC and by MR lesions of PI-RADS score of ≥ 3. The gold standard is combined systematic (median 23 cores) and targeted biopsies. RESULTS: Of 316 men, 121 (38%) harbored sPC. Of these 121 patients, 4 (3%) had a negative MRI. MRI correctly identified 117/121 (97%) patients with sPC. In these patients, mpMRI missed no additional sPC in 96 (82%), while MRI-negative sPC lesions were present in 21 patients (18%). Of 1896 sextants, 379 (20%) harbored sPC. MR-positive sextants contained sPC in 26% (337/1275), compared to 7% (42/621) in MR-negative sextants. On a patient basis, sensitivity was 0.97, specificity 0.22, positive predictive value 0.43, and negative predictive value 0.91. On a sextant basis, sensitivity was 0.73, specificity 0.38, positive predictive value 0.26, and negative predictive value 0.93. CONCLUSION: MpMRI mapping agreed well with histopathology with, at the observed sPC prevalence and on a patient basis, excellent sensitivity and negative predictive value, and acceptable specificity and positive predictive value for sPC. However, 18% of sPC was outside the mpMRI mapped region, quantifying limitations of MRI for complete localization of disease extent. KEY POINTS: ⢠Currently, exclusive MRI mapping of the prostate for focal treatment planning cannot be recommended, as significant prostate cancer may remain untreated in a substantial number of cases. ⢠At the observed sPC prevalence and on a patient basis, mpMRI has excellent sensitivity and NPV, and acceptable specificity and PPV for detection of prostate cancer, supporting its use to detect suspicious lesions before biopsy. ⢠Despite the excellent global performance, 18% of sPC was outside the mpMRI mapped region even when a security margin of 10 mm was considered, indicating that prostate MRI has limited ability to completely map all cancer foci within the prostate.
Asunto(s)
Biopsia con Aguja Gruesa , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios RetrospectivosRESUMEN
OBJECTIVES: Motivated by the similar appearance of malignant breast lesions in high b-value diffusion-weighted imaging (DWI) and positron emission tomography, the purpose of this work was to evaluate the applicability of a threshold isocontouring approach commonly used in positron emission tomography to analyze DWI data acquired from female human breasts with minimal interobserver variability. METHODS: Twenty-three female participants (59.4 ± 10.0 years) with 23 lesions initially classified as suggestive of cancers in x-ray mammography screening were subsequently imaged on a 1.5-T magnetic resonance imaging scanner. Diffusion-weighted imaging was performed prior to biopsy with b values of 0, 100, 750, and 1500 s/mm. Isocontouring with different threshold levels was performed on the highest b-value image to determine the voxels used for subsequent evaluation of diffusion metrics. The coefficient of variation was computed by specifying 4 different regions of interest drawn around the lesion. Additionally, a receiver operating statistical analysis was performed. RESULTS: Using a relative threshold level greater than or equal to 0.85 almost completely suppresses the intra-individual and inter-individual variability. Among 4 studied diffusion metrics, the diffusion coefficients from the intravoxel incoherent motion model returned the highest area under curve value of 0.9. The optimal cut-off diffusivity was found to be 0.85 µm/ms with a sensitivity of 87.5% and specificity of 90.9%. CONCLUSION: Threshold isocontouring on high b-value maps is a viable approach to reliably evaluate DWI data of suspicious focal lesions in magnetic resonance mammography.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Mamografía/métodos , Anciano , Femenino , Humanos , Persona de Mediana Edad , Modelos Teóricos , Variaciones Dependientes del Observador , Tomografía de Emisión de Positrones , Intensificación de Imagen Radiográfica , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
Purpose To compare biparametric contrast-free radiomic machine learning (RML), mean apparent diffusion coefficient (ADC), and radiologist assessment for characterization of prostate lesions detected during prospective MRI interpretation. Materials and Methods This single-institution study included 316 men (mean age ± standard deviation, 64.0 years ± 7.8) with an indication for MRI-transrectal US fusion biopsy between May 2015 and September 2016 (training cohort, 183 patients; test cohort, 133 patients). Lesions identified by prospective clinical readings were manually segmented for mean ADC and radiomics analysis. Global and zone-specific random forest RML and mean ADC models for classification of clinically significant prostate cancer (Gleason grade group ≥ 2) were developed on the training set and the fixed models tested on an independent test set. Clinical readings, mean ADC, and radiomics were compared by using the McNemar test and receiver operating characteristic (ROC) analysis. Results In the test set, radiologist interpretation had a per-lesion sensitivity of 88% (53 of 60) and specificity of 50% (79 of 159). Quantitative measurement of the mean ADC (cut-off 732 mm2/sec) significantly reduced false-positive (FP) lesions from 80 to 60 (specificity 62% [99 of 159]) and false-negative (FN) lesions from seven to six (sensitivity 90% [54 of 60]) (P = .048). Radiologist interpretation had a per-patient sensitivity of 89% (40 of 45) and specificity of 43% (38 of 88). Quantitative measurement of the mean ADC reduced the number of patients with FP lesions from 50 to 43 (specificity 51% [45 of 88]) and the number of patients with FN lesions from five to three (sensitivity 93% [42 of 45]) (P = .496). Comparison of the area under the ROC curve (AUC) for the mean ADC (AUCglobal = 0.84; AUCzone-specific ≤ 0.87) vs the RML (AUCglobal = 0.88, P = .176; AUCzone-specific ≤ 0.89, P ≥ .493) showed no significantly different performance. Conclusion Quantitative measurement of the mean apparent diffusion coefficient (ADC) improved differentiation of benign versus malignant prostate lesions, compared with clinical assessment. Radiomic machine learning had comparable but not better performance than mean ADC assessment. © RSNA, 2018 Online supplemental material is available for this article.
Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Anciano , Humanos , Masculino , Persona de Mediana Edad , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/patología , Curva ROC , Estudios RetrospectivosRESUMEN
Purpose To evaluate a radiomics model of Breast Imaging Reporting and Data System (BI-RADS) 4 and 5 breast lesions extracted from breast-tissue-optimized kurtosis magnetic resonance (MR) imaging for lesion characterization by using a sensitivity threshold similar to that of biopsy. Materials and Methods This institutional study included 222 women at two independent study sites (site 1: training set of 95 patients; mean age ± standard deviation, 58.6 years ± 6.6; 61 malignant and 34 benign lesions; site 2: independent test set of 127 patients; mean age, 58.2 years ± 6.8; 61 malignant and 66 benign lesions). All women presented with a finding suspicious for cancer at x-ray mammography (BI-RADS 4 or 5) and an indication for biopsy. Before biopsy, diffusion-weighted MR imaging (b values, 0-1500 sec/mm2) was performed by using 1.5-T imagers from different MR imaging vendors. Lesions were segmented and voxel-based kurtosis fitting adapted to account for fat signal contamination was performed. A radiomics feature model was developed by using a random forest regressor. The fixed model was tested on an independent test set. Conventional interpretations of MR imaging were also assessed for comparison. Results The radiomics feature model reduced false-positive results from 66 to 20 (specificity 70.0% [46 of 66]) at the predefined sensitivity of greater than 98.0% [60 of 61] in the independent test set, with BI-RADS 4a and 4b lesions benefiting from the analysis (specificity 74.0%, [37 of 50]; 60.0% [nine of 15]) and BI-RADS 5 lesions showing no added benefit. The model significantly improved specificity compared with the median apparent diffusion coefficient (P < .001) and apparent kurtosis coefficient (P = .02) alone. Conventional reading of dynamic contrast material-enhanced MR imaging provided sensitivity of 91.8% (56 of 61) and a specificity of 74.2% (49 of 66). Accounting for fat signal intensity during fitting significantly improved the area under the curve of the model (P = .001). Conclusion A radiomics model based on kurtosis diffusion-weighted imaging performed by using MR imaging machines from different vendors allowed for reliable differentiation between malignant and benign breast lesions in both a training and an independent test data set. © RSNA, 2018 Online supplemental material is available for this article.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Mamografía/métodos , Sistemas de Información Radiológica , Mama/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
PURPOSE: Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (µFA). METHODS: The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on µFA measurements was evaluated in the brains of six healthy volunteers. RESULTS: The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the µFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute µFA values in white matter was not observed. CONCLUSION: It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Anisotropía , Humanos , Fantasmas de ImagenRESUMEN
OBJECTIVES: The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. METHODS: This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm2). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. RESULTS: Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). CONCLUSIONS: MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. KEY POINTS: ⢠Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. ⢠Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. ⢠Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Mamografía/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Anciano , Mama/patología , Neoplasias de la Mama/patología , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
Stejskal and Tanner's ingenious pulsed field gradient design from 1965 has made diffusion NMR and MRI the mainstay of most studies seeking to resolve microstructural information in porous systems in general and biological systems in particular. Methods extending beyond Stejskal and Tanner's design, such as double diffusion encoding (DDE) NMR and MRI, may provide novel quantifiable metrics that are less easily inferred from conventional diffusion acquisitions. Despite the growing interest on the topic, the terminology for the pulse sequences, their parameters, and the metrics that can be derived from them remains inconsistent and disparate among groups active in DDE. Here, we present a consensus of those groups on terminology for DDE sequences and associated concepts. Furthermore, the regimes in which DDE metrics appear to provide microstructural information that cannot be achieved using more conventional counterparts (in a model-free fashion) are elucidated. We highlight in particular DDE's potential for determining microscopic diffusion anisotropy and microscopic fractional anisotropy, which offer metrics of microscopic features independent of orientation dispersion and thus provide information complementary to the standard, macroscopic, fractional anisotropy conventionally obtained by diffusion MR. Finally, we discuss future vistas and perspectives for DDE.
Asunto(s)
Imagen por Resonancia Magnética/clasificación , Imagen por Resonancia Magnética/normas , Espectroscopía de Resonancia Magnética/clasificación , Espectroscopía de Resonancia Magnética/normas , Procesamiento de Señales Asistido por Computador , Terminología como Asunto , Guías como AsuntoRESUMEN
PURPOSE: To evaluate the time dependency of apparent diffusion coefficient Dapp and apparent diffusional kurtosis Kapp in vivo in the human calf. MATERIALS AND METHODS: Diffusion-weighted images of five healthy male volunteers were acquired using a 1.5T MR scanner. A stimulated echo sequence with echo planar imaging readout was used with diffusion gradients oriented along the three main axes. Mixing times (TM) of 100, 300, 500, and 700 ms and b-values ranging from 0 to 5600 s/mm(2) were used. Dapp and Kapp were determined. RESULTS: Dapp and Kapp decreased with increasing TM. As an example for absolute values, Dapp of the tibialis anterior drops from 1.18 ± 0.04 µm(2) /ms (TM = 100 ms) to 0.86 ± 0.02 µm(2) /ms (TM = 700 ms) (P = 0.001) and Kapp from 0.38 ± 0.06 to 0.32 ± 0.03 (P = 0.046) for a diffusion weighting along the left-right direction. Kapp was smaller than 0.43 in all muscles and at all TMs. CONCLUSION: The clearly observed time-dependence of Dapp and Kapp is an indicator of restricted diffusion in muscle tissue and may thus be a promising marker to investigate alterations of the microstructure. Compared to typical kurtosis values in white matter tissue of the brain, the kurtosis in muscle tissue is much smaller, which we attribute to the absence of the almost impermeable myelin sheath.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Músculo Esquelético/anatomía & histología , Adulto , Imagen Eco-Planar , Voluntarios Sanos , Humanos , Pierna , MasculinoRESUMEN
Maxwell or concomitant fields imprint additional phases on the transverse magnetization. This concomitant phase may cause severe image artifacts like signal voids or distort the quantitative parameters due to the induced intravoxel dephasing. In particular, double diffusion encoding (DDE) schemes with two pairs of bipolar diffusion-weighting gradients separated by a refocusing radiofrequency (RF) pulse are prone to concomitant field-induced artifacts. In this work, a method for reducing concomitant field effects in these DDE sequences based on additional oscillating gradients is presented. These oscillating gradient pulses obtained by constrained optimization were added to the original gradient waveforms. The modified sequences reduced the accumulated concomitant phase without significant changes in the original sequence characteristics. The proposed method was applied to a DDE acquisition scheme consisting of 60 pairs of diffusion wave vectors. For phantom as well as for in vivo experiments, a considerable increase in the signal-to-noise ratio (SNR) was obtained. For phantom measurements with a diffusion weighting of b = 2000 s/mm2 for each of the gradient pairs, an SNR increase of up to 40% was observed for a transversal slice that had a distance of 5 cm from the isocenter. For equivalent slice parameters, in vivo measurements in the brain of a healthy volunteer exhibited an increase in SNR of up to 35% for b = 750 s/mm2 for each weighting. These findings are supported by corresponding simulations, which also predict a positive effect on the SNR. In summary, the presented method leads to an SNR gain without additional RF refocusing pulses.
Asunto(s)
Artefactos , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Relación Señal-Ruido , Fantasmas de Imagen , Voluntarios SanosRESUMEN
One main interest of nuclear magnetic resonance (NMR) diffusion experiments is the investigation of boundaries such as cell membranes hindering the diffusion process. NMR diffusion measurements allow collecting the signal from the whole sample. This mainly eliminates the problem of vanishing signal at increasing resolution. It has been a longstanding question if, in principle, the exact shape of closed pores can be determined by NMR diffusion measurements. In this work, we present a method using short diffusion gradient pulses only, which is able to reveal the shape of arbitrary closed pores without relying on a priori knowledge. In comparison to former approaches, the method has reduced demands on relaxation times due to faster convergence to the diffusion long-time limit and allows for a more flexible NMR sequence design, because, e.g., stimulated echoes can be used.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Difusión , Análisis de Fourier , PorosidadRESUMEN
While NMR diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media, direct imaging of pore shapes would be of high interest. Here we demonstrate experimentally that complexly shaped closed pores can be imaged by diffusion acquisitions. Collecting the signal from the whole sample eliminates the problem of vanishing signal at increasing resolution of conventional NMR imaging. This approach may be used to noninvasively obtain structural information inaccessible so far such as pore or cell shapes, cell density, or axon integrity.