Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639600

RESUMEN

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Asunto(s)
Oryza , Oryza/genética , Citocininas/genética , Nucleósidos de Purina , N-Glicosil Hidrolasas/genética , Nucleósidos , Pared Celular/genética
2.
Plant J ; 107(6): 1616-1630, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216173

RESUMEN

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amoníaco/metabolismo , Cloruro de Amonio/farmacología , Animales , Femenino , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mutación , Cebollas/citología , Cebollas/genética , Oocitos/metabolismo , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Vacuolas/metabolismo , Xenopus laevis
3.
Plant Cell ; 30(4): 925-945, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29622567

RESUMEN

Nitrogen (N) is often a limiting nutrient whose availability determines plant growth and productivity. Because its availability is often low and/or not uniform over time and space in nature, plants respond to variations in N availability by altering uptake and recycling mechanisms, but the molecular mechanisms underlying how these responses are regulated are poorly understood. Here, we show that a group of GARP G2-like transcription factors, Arabidopsis thaliana NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL REPRESSOR1/HYPERSENSITIVE TO LOW Pi-ELICITED PRIMARY ROOT SHORTENING1 proteins (NIGT1/HRS1s), are factors that bind to the promoter of the N starvation marker NRT2.4 and repress an array of N starvation-responsive genes under conditions of high N availability. Transient assays and expression analysis demonstrated that NIGT1/HRS1s are transcriptional repressors whose expression is regulated by N availability. We identified target genes of the NIGT1/HRS1s by genome-wide transcriptome analyses and found that they are significantly enriched in N starvation response-related genes, including N acquisition, recycling, remobilization, and signaling genes. Loss of NIGT1/HRS1s resulted in deregulation of N acquisition and accumulation. We propose that NIGT1/HRS1s are major regulators of N starvation responses that play an important role in optimizing N acquisition and utilization under fluctuating N conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
4.
Biosci Biotechnol Biochem ; 84(5): 970-979, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31985350

RESUMEN

Plants flower under appropriate day-length conditions by integrating temporal information provided by the circadian clock with light and dark information from the environment. A sub-group of plant specific circadian clock-associated PSEUDO-RESPONSE REGULATOR (PRR) genes (PRR7/PRR3 sub-group) controls flowering time both in long-day and short-day plants; however, flowering control by the other two PRR gene sub-groups has been reported only in Arabidopsis thaliana (Arabidopsis), a model long-day plant. Here, we show that an Arabidopsis PRR9/PRR5 sub-group gene can control flowering time (heading date) in rice, a short-day plant. Although PRR5 promotes flowering in Arabidopsis, transgenic rice overexpressing Arabidopsis PRR5 caused late flowering. Such transgenic rice plants produced significantly higher biomass, but not grain yield, due to the late flowering. Concomitantly, expression of Hd3a, a rice florigen gene, was reduced in the transgenic rice.Abbreviations: CCT: CONSTANS, CONSTANS-LIKE, and TOC1; HD: HEADING DATE; LHY: LATE ELONGATED HYPOCOTYL; Ppd: photoperiod; PR: pseudo-receiver; PRR: PSEUDO-RESPONSE REGULATOR; TOC1: TIMING OF CAB EXPRESSION 1; ZTL: ZEITLUPE.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ritmo Circadiano/genética , Flores/crecimiento & desarrollo , Flores/genética , Oryza/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Relojes Circadianos/genética , Florigena/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Oryza/crecimiento & desarrollo , Fenotipo , Fotoperiodo , Filogenia , Plantas Modificadas Genéticamente
5.
Plant J ; 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29901832

RESUMEN

In plants, establishment of the basic body plan during embryogenesis involves complex processes of axis formation, cell fate specification and organ differentiation. While molecular mechanisms of embryogenesis have been well studied in the eudicot Arabidopsis, only a small number of genes regulating embryogenesis has been identified in grass species. Here, we show that a RKD-type RWP-RK transcription factor encoded by Shohai1 (Shai1) is indispensable for embryo and endosperm development in maize. Loss of Shai1 function causes variable morphological defects in the embryo including small scutellum, shoot axis bifurcation and arrest during early organogenesis. Analysis of molecular markers in mutant embryos reveals disturbed patterning of gene expression and altered polar auxin transport. In contrast with typical embryo-defective (emb) mutants that expose a vacant embryo pocket in the endosperm, the endosperm of shai1 kernels conforms to the varied size and shape of the embryo. Furthermore, genetic analysis confirms that Shai1 is required for autonomous formation of the embryo pocket in endosperm of emb mutants. Analyses of genetic mosaic kernels generated by B-A translocation revealed that expression of Shai1 in the endosperm could partially rescue a shai1 mutant embryo and suggested that Shai1 is involved in non-cell autonomous signaling from endosperm that supports normal embryo growth. Taken together, we propose that the Shai1 gene functions in regulating embryonic patterning during grass embryogenesis partly by endosperm-to-embryo interaction.

6.
Plant Cell Physiol ; 60(4): 725-737, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30801122

RESUMEN

Upon fertilization in angiosperms, one sperm cell fuses with the egg cell to produce a zygote, and, via karyogamy, the parental genetic information is combined to form the diploid zygotic genome. Recently, analyses with parentally imbalanced rice zygotes indicated that parental genomes are utilized synergistically in zygotes with different functions, and that genes transcribed from the paternal or maternal allele might play important roles in zygotic development. Herein, we first conducted single nucleotide polymorphism-based mRNA-sequencing using intersubspecific rice zygotes. Twenty-three genes, with paternal allele-specific expression in zygotes, were identified, and, surprisingly, their allele dependencies in the globular-like embryo tended to be biallelic. This suggests that the paternal-dependent expression of these genes is temporary, occurring during the early stages of zygote development. Of the 23 genes, we focused on Oryza sativa Apospory-specific Genome Region (ASGR)-BABY-BOOM LIKE (BBML) 1 (OsASGR-BBML1), presumed to encode an AP2-transcription factor, due to its reported role in zygotic development. Interestingly, ectopic expression of OsASGR-BBML1 in egg cells induced nuclear and cell divisions, indicating that exogenously expressed OsASGR-BBML1 converts the proliferation status of the egg cell from quiescent to active. In addition, the suppression of the function of OsASGR-BBML1 and its homologs in zygotes resulted in the developmental arrest, suggesting that OsASGR-BBML1 possesses an important role in initiating zygotic development. Monoallelic or preferential gene expression from the paternal genome in the zygote might be a safety mechanism allowing egg cells to suppress the gene expression cascade toward early embryogenesis that is normally triggered by fusion with a sperm cell.


Asunto(s)
Oryza/genética , Alelos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cigoto
7.
Plant Cell Physiol ; 58(1): e3, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013273

RESUMEN

For proper control of biological activity, some key genes are highly expressed in a particular spatiotemporal domain. Mining of such spatiotemporally expressed genes using large-scale gene expression data derived from a broad range of experimental sources facilitates our understanding of genome-scale functional gene networks. However, comprehensive information on spatiotemporally expressed genes is lacking in plants. To collect such information, we devised a new index, Δdmax, which is the maximum difference in relative gene expression levels between sample runs which are neighboring when sorted by the levels. Employing this index, we comprehensively evaluated transcripts using large-scale RNA sequencing (RNA-Seq) data stored in the Sequence Read Archive for eight plant species: Arabidopsis thaliana (Arabidopsis), Solanum lycopersicum (tomato), Solanum tuberosum (potato), Oryza sativa (rice), Sorghum bicolor (sorghum), Vitis vinifera (grape), Medicago truncatula (Medicago), and Glycine max (soybean). Based on the frequency distribution of the Δdmax values, approximately 70,000 transcripts showing 0.3 or larger Δdmax values were extracted for the eight species. Information on these genes including the Δdmax values, functional annotations, conservation among species, and experimental conditions where the genes show high expression levels is provided in a new database, CATchUP (http://plantomics.mind.meiji.ac.jp/CATchUP). The CATchUP database assists in identifying genes specifically expressed under particular conditions with powerful search functions and an intuitive graphical user interface.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Plantas/genética , Arabidopsis/genética , Biología Computacional/métodos , Redes Reguladoras de Genes , Genoma de Planta/genética , Internet , Solanum lycopersicum/genética , Medicago truncatula/genética , Oryza/genética , Plantas/clasificación , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Solanum tuberosum/genética , Sorghum/genética , Glycine max/genética , Interfaz Usuario-Computador , Vitis/genética
8.
Plant Cell Physiol ; 58(1): e1, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158643

RESUMEN

Publicly available microarray-based transcriptome data on plants are remarkably valuable in terms of abundance and variation of samples, particularly for Oryza sativa (rice) and Arabidopsis thaliana (Arabidopsis). Here, we introduce the web database PlantExpress (http://plantomics.mind.meiji.ac.jp/PlantExpress/) as a platform for gene expression network (GEN) analysis with the public microarray data of rice and Arabidopsis. PlantExpress has two functional modes. The single-species mode is specialized for GEN analysis within one of the species, while the cross-species mode is optimized for comparative GEN analysis between the species. The single-species mode for rice is the new version of OryzaExpress, which we have maintained since 2006. The single-species mode for Arabidopsis, named ArthaExpress, was newly developed. PlantExpress stores data obtained from three microarrays, the Affymetrix Rice Genome Array, the Agilent Rice Gene Expression 4x44K Microarray, and the Affymetrix Arabidopsis ATH1 Genome Array, with respective totals of 2,678, 1,206, and 10,940 samples. This database employs a 'MyList' function with which users may save lists of arbitrary genes and samples (experimental conditions) to use in analyses. In cross-species mode, the MyList function allows performing comparative GEN analysis between rice and Arabidopsis. In addition, the gene lists saved in MyList can be directly exported to the PODC database, which provides information and a platform for comparative GEN analysis based on RNA-seq data and knowledge-based functional annotation of plant genes. PlantExpress will facilitate understanding the biological functions of plant genes.


Asunto(s)
Arabidopsis/genética , Bases de Datos Genéticas , Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oryza/genética , Transcriptoma/genética , Algoritmos , Minería de Datos , Anotación de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
9.
Plant Cell Physiol ; 58(1): e8, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28111364

RESUMEN

Solanum lycopersicum (tomato) is an important agronomic crop and a major model fruit-producing plant. To facilitate basic and applied research, comprehensive experimental resources and omics information on tomato are available following their development. Mutant lines and cDNA clones from a dwarf cultivar, Micro-Tom, are two of these genetic resources. Large-scale sequencing data for ESTs and full-length cDNAs from Micro-Tom continue to be gathered. In conjunction with information on the reference genome sequence of another cultivar, Heinz 1706, the Micro-Tom experimental resources have facilitated comprehensive functional analyses. To enhance the efficiency of acquiring omics information for tomato biology, we have integrated the information on the Micro-Tom experimental resources and the Heinz 1706 genome sequence. We have also inferred gene structure by comparison of sequences between the genome of Heinz 1706 and the transcriptome, which are comprised of Micro-Tom full-length cDNAs and Heinz 1706 RNA-seq data stored in the KaFTom and Sequence Read Archive databases. In order to provide large-scale omics information with streamlined connectivity we have developed and maintain a web database TOMATOMICS (http://bioinf.mind.meiji.ac.jp/tomatomics/). In TOMATOMICS, access to the information on the cDNA clone resources, full-length mRNA sequences, gene structures, expression profiles and functional annotations of genes is available through search functions and the genome browser, which has an intuitive graphical interface.


Asunto(s)
ADN Complementario/genética , Bases de Datos Genéticas , Genoma de Planta/genética , Genómica/métodos , Mutación , Solanum lycopersicum/genética , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Internet , Análisis de Secuencia de ARN , Transcriptoma/genética
10.
Plant Cell Physiol ; 57(5): 1085-97, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27012548

RESUMEN

Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Biomasa , Sequías , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Luz , Fenotipo , Salinidad , Estrés Fisiológico , Factores de Transcripción/genética
11.
Plant Cell Physiol ; 57(5): 961-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27084593

RESUMEN

Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced in species of the Solanaceae. Here, we report that a group of jasmonate-responsive transcription factors of the ETHYLENE RESPONSE FACTOR (ERF) family (JREs) are close homologs of alkaloid regulators in Cathranthus roseus and tobacco, and regulate production of SGAs in tomato. In transgenic tomato, overexpression and dominant suppression of JRE genes caused drastic changes in SGA accumulation and in the expression of genes for metabolic enzymes involved in the multistep pathway leading to SGA biosynthesis, including the upstream mevalonate pathway. Transactivation and DNA-protein binding assays demonstrate that JRE4 activates the transcription of SGA biosynthetic genes by binding to GCC box-like elements in their promoters. These JRE-binding elements occur at significantly higher frequencies in proximal promoter regions of the genes regulated by JRE genes, supporting the conclusion that JREs mediate transcriptional co-ordination of a series of metabolic genes involved in SGA biosynthesis.


Asunto(s)
Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Fitosteroles/biosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo , Alcaloides/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Factores de Transcripción/genética , Activación Transcripcional
12.
Plant Cell Physiol ; 57(1): e6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26746174

RESUMEN

Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera.


Asunto(s)
Bases de Datos Genéticas , Haptophyta/genética , Transcriptoma , Etiquetas de Secuencia Expresada , Ontología de Genes , Anotación de Secuencia Molecular
13.
Plant Cell Physiol ; 56(1): e9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25505034

RESUMEN

Comprehensive integration of large-scale omics resources such as genomes, transcriptomes and metabolomes will provide deeper insights into broader aspects of molecular biology. For better understanding of plant biology, we aim to construct a next-generation sequencing (NGS)-derived gene expression network (GEN) repository for a broad range of plant species. So far we have incorporated information about 745 high-quality mRNA sequencing (mRNA-Seq) samples from eight plant species (Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Sorghum bicolor, Vitis vinifera, Solanum tuberosum, Medicago truncatula and Glycine max) from the public short read archive, digitally profiled the entire set of gene expression profiles, and drawn GENs by using correspondence analysis (CA) to take advantage of gene expression similarities. In order to understand the evolutionary significance of the GENs from multiple species, they were linked according to the orthology of each node (gene) among species. In addition to other gene expression information, functional annotation of the genes will facilitate biological comprehension. Currently we are improving the given gene annotations with natural language processing (NLP) techniques and manual curation. Here we introduce the current status of our analyses and the web database, PODC (Plant Omics Data Center; http://bioinf.mind.meiji.ac.jp/podc/), now open to the public, providing GENs, functional annotations and additional comprehensive omics resources.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes , Genoma de Planta/genética , Genómica , Almacenamiento y Recuperación de la Información , Plantas/genética , Curaduría de Datos , Regulación de la Expresión Génica de las Plantas , Internet , Anotación de Secuencia Molecular , Procesamiento de Lenguaje Natural , Transcriptoma
14.
J Plant Res ; 128(3): 371-80, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740809

RESUMEN

Small nuclear RNA (snRNA) is a class of non-coding RNAs that processes pre-mRNA and rRNA. Transcription of abundant snRNA species is regulated by the snRNA activating protein complex (SNAPc), which is conserved among multicellular organisms including plants. SRD2, a putative subunit of SNAPc in Arabidopsis thaliana, is essential for development, and the point mutation srd2-1 causes severe defects in hypocotyl dedifferentiation and de novo meristem formation. Based on phenotypic analysis of srd2-1 mutant plants, we previously proposed that snRNA content is a limiting factor in dedifferentiation in plant cells. Here, we performed functional complementation analysis of srd2-1 using transgenic srd2-1 Arabidopsis plants harboring SRD2 homologs from Populus trichocarpa (poplar), Nicotiana tabacum (tobacco), Oryza sativa (rice), the moss Physcomitrella patens, and Homo sapiens (human) under the control of the Arabidopsis SRD2 promoter. Only rice SRD2 suppressed the faulty tissue culture responses of srd2-1, and restore the snRNA levels; however, interestingly, all SRD2 homologs except poplar SRD2 rescued the srd2-1 defects in seedling development. These findings demonstrated that cell dedifferentiation and organogenesis induced during tissue culture require higher snRNA levels than does seedling development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Desdiferenciación Celular/genética , Organogénesis de las Plantas/genética , Proteínas de Plantas/genética , ARN Nuclear Pequeño/genética , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Prueba de Complementación Genética , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Mutación , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Regiones Promotoras Genéticas/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Nicotiana/genética , Factores de Transcripción/metabolismo
15.
Plant Cell Physiol ; 54(2): e9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314752

RESUMEN

Plant hormones play important roles as signaling molecules in the regulation of growth and development by controlling the expression of downstream genes. Since the hormone signaling system represents a complex network involving functional cross-talk through the mutual regulation of signaling and metabolism, a comprehensive and integrative analysis of plant hormone concentrations and gene expression is important for a deeper understanding of hormone actions. We have developed a database named Uniformed Viewer for Integrated Omics (UniVIO: http://univio.psc.riken.jp/), which displays hormone-metabolome (hormonome) and transcriptome data in a single formatted (uniformed) heat map. At the present time, hormonome and transcriptome data obtained from 14 organ parts of rice plants at the reproductive stage and seedling shoots of three gibberellin signaling mutants are included in the database. The hormone concentration and gene expression data can be searched by substance name, probe ID, gene locus ID or gene description. A correlation search function has been implemented to enable users to obtain information of correlated substance accumulation and gene expression. In the correlation search, calculation method, range of correlation coefficient and plant samples can be selected freely.


Asunto(s)
Bases de Datos Genéticas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/genética , Programas Informáticos , Transcriptoma , Ácido Abscísico/genética , Citocininas/genética , Flores/genética , Giberelinas/genética , Internet , Oryza/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Motor de Búsqueda
16.
Plant Physiol ; 160(1): 319-31, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22811434

RESUMEN

cis-Zeatin (cZ) is generally regarded as a cytokinin with little or no activity, compared with the highly active trans-zeatin (tZ). Although recent studies suggested possible roles for cZ, its physiological significance remains unclear. In our studies with rice (Oryza sativa), cZ inhibited seminal root elongation and up-regulated cytokinin-inducible genes, and its activities were comparable to those of tZ. Tracer experiments showed that exogenously supplied cZ-riboside was mainly converted into cZ derivatives but scarcely into tZ derivatives, indicating that isomerizations of cZ derivatives into tZ derivatives are a minor pathway in rice cytokinin metabolism. We identified three putative cZ-O-glucosyltransferases (cZOGT1, cZOGT2, and cZOGT3) in rice. The cZOGTs preferentially catalyzed O-glucosylation of cZ and cZ-riboside rather than tZ and tZ-riboside in vitro. Transgenic rice lines ectopically overexpressing the cZOGT1 and cZOGT2 genes exhibited short-shoot phenotypes, delay of leaf senescence, and decrease in crown root number, while cZOGT3 overexpressor lines did not show shortened shoots. These results propose that cZ activity has a physiological impact on the growth and development of rice.


Asunto(s)
Citocininas/metabolismo , Glucosiltransferasas/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Zeatina/farmacología , Secuencia de Aminoácidos , Clonación Molecular , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosiltransferasas/genética , Isomerismo , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Alineación de Secuencia , Zeatina/metabolismo
17.
Stress Biol ; 3(1): 15, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676400

RESUMEN

Acetic acid is a simple and universal compound found in various organisms. Recently, acetic acid was found to play an essential role in conferring tolerance to water deficit stress in plants. This novel mechanism of drought stress tolerance mediated by acetic acid via networks involving phytohormones, genes, and chromatin regulation has great potential for solving the global food crisis and preventing desertification caused by global warming. We highlight the functions of acetic acid in conferring tolerance to water deficit stress.

18.
Front Nutr ; 9: 1078060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698463

RESUMEN

Background: Mushrooms are rich in dietary fiber, and fiber intake has been reported to increase the levels of short-chain fatty acids (SCFAs). It has also been reported that SCFAs promote immunoglobulin A (IgA) production, indicating involvement in systemic immunity. Objectives: The objective of this study was to evaluate the effects of mushroom consumption on the amount of intestinal IgA. We also aimed to comprehensively evaluate the gut microbiota and intestinal metabolome and to conduct an exploratory analysis of their relationship with IgA. Methods: Healthy adults (n = 80) were enrolled in a parallel group trial. Participants consumed a diet with mushrooms or a placebo diet once daily for 4 weeks. Gut microbiota profiles were assessed by sequencing the bacterial 16S ribosomal RNA-encoding gene. Intestinal metabolome profiles were analyzed using capillary electrophoresis-time of flight mass spectrometry (CE-TOFMS). Results: Mushroom consumption tended to increase IgA levels at 4 weeks of consumption compared to those in the control group (p = 0.0807; Hedges' g = 0.480). The mushroom group had significantly higher levels of intestinal SCFAs, such as butyrate and propionate, than the control group (p = 0.001 and 0.020; Hedges' g = 0.824 and 0.474, respectively). Correlation analysis between the changes in the amount of intestinal IgA and the baseline features of the intestinal environment showed that the increasing amount of intestinal IgA was positively correlated with the baseline levels of SCFAs (Spearman's R = 0.559 and 0.419 for butyrate and propionate, respectively). Conclusion: Consumption of mushrooms significantly increased the intestinal SCFAs and IgA in some subjects. The increase in intestinal IgA levels was more prominent in subjects with higher SCFA levels at baseline. This finding provides evidence that mushroom alters the intestinal environment, but the intensity of the effect still depends on the baseline intestinal environment. This trial was registered at www.umin.ac.jp as UMIN000043979.

19.
Nutrients ; 14(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079725

RESUMEN

(1) Background: Consumption of barley has been known to exert beneficial effects on glucose tolerance; however, it has also been reported that there are inter-individual differences in these responses. Recent evidence has suggested that these individual differences are mediated by the gut microbiota. (2) Methods: In the present study, we aimed to understand the relationship between the intestinal environment, including intestinal microbiome and their metabolome, and glucose tolerance. A randomized controlled trial with a 4-week consumption of barley or control food was conducted. We conducted an integrated analysis of the intestinal microbiome and metabolome and analyzed the relationship with improvement of glucose tolerance. (3) Results: We found that metabolites such as azelate were significantly increased after barley consumption. Furthermore, the subjects whose glucose tolerance was slightly impaired showed improvement in their glucose tolerance index following the barley consumption. Additionally, the analysis showed that the increase in the abundance of the Anaerostipes was correlated with the improvement in the glucose tolerance index. (4) Conclusions: Our findings indicate that the effects of barley consumption for glucose tolerance are partly defined by the intestinal environment of consumers, providing a quantitative measurement of the dietary effect based on the intestinal environment.


Asunto(s)
Microbioma Gastrointestinal , Hordeum , Glucosa/metabolismo , Humanos , Intestinos , Japón
20.
Int J Hematol ; 115(6): 890-897, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35258855

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. As overall cure rates of childhood ALL have improved, reduction of overall treatment intensity while still ensuring excellent outcomes is imperative for low-risk patients. We report the outcomes of patients treated following the standard-risk protocol from the prospective Japan Association of Childhood Leukemia Study (JACLS) ALL-02 study, which was conducted between 2002 and 2008 for patients with newly diagnosed ALL aged 1-18 years. Of 1138 patients with B-cell precursor ALL, 388 (34.1%) were allocated to this protocol. Excellent outcomes were achieved despite the overall treatment intensity being lower than that of most contemporary protocols: 4 years event-free survival (EFS) was 92.3% and 4 years overall survival 98.2%. Patients with high hyperdiploidy (HHD) involving triple trisomy (trisomy of chromosomes 4, 10, and 17) or ETV6-RUNX1 had even better outcomes (4 years EFS 97.6% and 100%, respectively). Unique characteristics of this protocol include a selection of low-risk patients with a low initial WBC count and good early treatment response and reduction of cumulative doses of chemotherapeutic agents while maintaining dose density. In Japan, we are currently investigating the feasibility of this protocol while incorporating minimal residual disease into the patient stratification strategy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Trisomía , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Supervivencia sin Enfermedad , Humanos , Lactante , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , Estudios Prospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA