Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 74: 584-592, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29355762

RESUMEN

Akirins, members of the NF-κB signaling pathway, are highly conserved nuclear proteins, which regulate gene expression in many physiological processes, including immunity, myogenesis, carcinogenesis, and embryogenesis. The akirin family in teleost fish consists of two to three genes. In the present study, three akirin genes from Hippocampus abdominalis were identified from a transcriptome database and designated as HaAkirin1, HaAkirin2(1), and HaAkirin2(2). The nuclear localization of HaAkirin1 and HaAkirin2(1) was confirmed by subcellular localization analysis. In contrast, diffused localization of HaAkirin2(2) was identified in the nucleus and cytoplasm that confirmed the aberrant nature of the nuclear localization signal. Phylogenetic analysis revealed a closer relationship of HaAkirins with other known teleost akirins. All three HaAkirin transcripts were ubiquitously expressed in all examined tissues with higher expression in ovary tissue. Immune challenge with LPS, poly I:C, and Streptococcus iniae exhibited a significant increase in the expression of all three HaAkirins in kidney and liver tissues. NF-κB luciferase assays revealed that relative luciferase activity was significantly higher for all three HaAkirin genes than mock controls. These results suggest that HaAkirin genes might play a role in regulating NF-κB dependent immune gene expression and their expression could be induced by bacterial and viral pathogen recognition molecular patterns.


Asunto(s)
Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Smegmamorpha/genética , Smegmamorpha/inmunología , Secuencia de Aminoácidos , Animales , Femenino , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Lipopolisacáridos/fisiología , Masculino , FN-kappa B/fisiología , Proteínas Nucleares/química , Filogenia , Poli I-C/farmacología , Alineación de Secuencia/veterinaria , Transducción de Señal , Infecciones Estreptocócicas/inmunología , Streptococcus iniae/fisiología
2.
Fish Shellfish Immunol ; 67: 66-77, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28528707

RESUMEN

Black rockfish (Sebastes schlegelii), an important aquaculture species in Korea, has been affected by bacterial diseases leading to a drastic decline in production. Goose-type lysozyme (LysG) is a key enzyme of the innate immune system to eradicate bacterial infections. In this study, two isoforms of LysG from black rockfish, designated as RfLysG1 and RfLysG2, have been identified and characterized at the molecular, transcriptional, and functional levels. The deduced amino acid sequences had the LysG family characteristics and exhibited conserved properties, including active residues and domains. The cDNA sequences of RfLysG1 and RfLysG2 were 1514 bp and 900 bp in length, respectively. The 567-bp open reading frame (ORF) of RfLysG1 encoded a protein of 188 amino acids with molecular mass 20.11 kDa, and the 600-bp ORF of RfLysG2 encoded a polypeptide with 199 amino acids and molecular mass of 22.19 kDa. Homology studies indicated that RfLysG1 showed the highest identity (84.6%) with LysG-B of Oplegnathus fasciatus, while RfLysG2 showed the highest identity (74.4%) with LysG of Siniperca chuatsi. Both sequences possessed a soluble lytic trans-glycosylase domain. Both lacked signal peptide and they were not identified as proteins secreted by non-classical pathway by the SecretomeP server. Transcriptional analysis of the two genes showed constitutive expression, where both genes were highly expressed in blood under normal physiological conditions. In response to the immune challenges lipopolysaccharide (LPS), Streptococcus iniae, and poly I:C injection, the expression of RfLysG1 and RfLysG2 was significantly upregulated in blood and spleen tissues in a time-dependent manner. Turbidimetric assays indicated that both recombinant proteins tagged with maltose-binding protein (MBP) were reactive against several Gram-positive and Gram-negative bacteria, but MBP was inactive. Optimum temperatures for the recombinant RfLysG1 and RfLysG2 were 40 °C and 50 °C, respectively, and both were highly active at pH 3.0. The results provide evidence for the vital immunological role and bacteriolytic potential of RfLysG1 and RfLysG2.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces/genética , Peces/inmunología , Regulación de la Expresión Génica/inmunología , Muramidasa/genética , Muramidasa/inmunología , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/veterinaria , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Inmunidad Innata/genética , Muramidasa/química , Filogenia , Alineación de Secuencia/veterinaria
3.
Front Cell Dev Biol ; 10: 786268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300415

RESUMEN

Mitochondria are complex organelles containing 13 proteins encoded by mitochondrial DNA and over 1,000 proteins encoded on nuclear DNA. Many mitochondrial proteins are associated with the inner or outer mitochondrial membranes, either peripherally or as integral membrane proteins, while others reside in either of the two soluble mitochondrial compartments, the mitochondrial matrix and the intermembrane space. The biogenesis of the five complexes of the oxidative phosphorylation system are exemplars of this complexity. These large multi-subunit complexes are comprised of more than 80 proteins with both membrane integral and peripheral associations and require soluble, membrane integral and peripherally associated assembly factor proteins for their biogenesis. Mutations causing human mitochondrial disease can lead to defective complex assembly due to the loss or altered function of the affected protein and subsequent destabilization of its interactors. Here we couple sodium carbonate extraction with quantitative mass spectrometry (SCE-MS) to track changes in the membrane association of the mitochondrial proteome across multiple human knockout cell lines. In addition to identifying the membrane association status of over 840 human mitochondrial proteins, we show how SCE-MS can be used to understand the impacts of defective complex assembly on protein solubility, giving insights into how specific subunits and sub-complexes become destabilized.

4.
Dev Comp Immunol ; 81: 54-62, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29154855

RESUMEN

Lily-type lectins (LTLs) are soluble pathogen recognition receptors (PRRs) that contain one or more characteristic carbohydrate recognition domains (CRDs), through which LTLs bind reversibly and specifically to cognate sugar moieties present on the invading pathogen membrane and trigger the host innate immune responses. In this study, we identified a LTL homolog (SsLTL) from black rockfish (Sebastes schlegelii) transcriptome database and its functional roles in innate immunity was investigated in vitro and in vivo. Three mannose-binding sites were found in the protein sequence of SsLTL, among which two sites are conserved with those in mannose-binding lectins of monocotyledonous plants. SsLTL were highly expressed in both the external and internal mucosal tissues of healthy rockfish. During the immune challenge, early up-regulation of SsLTL mRNA expression showed in gill and blood upon both poly I:C and S. iniae challenges. In contrast, the challenge with lipopolysaccharide significantly down-regulated SsLTL expression in both examined tissues. Recombinant SsLTL showed a hemagglutination activity toward fish erythrocytes, which could be enhanced by the addition of calcium ions. Furthermore, strong agglutination activity of SsLTL was also observed with a broad range of fish pathogenic bacteria. Our results implied the crucial role of SsLTL as a PRR molecule in the black rockfish defense mechanism against invading microbial pathogens.


Asunto(s)
Proteínas de Peces/genética , Peces/inmunología , Branquias/fisiología , Lectinas/genética , Membrana Mucosa/fisiología , Receptores de Reconocimiento de Patrones/genética , Infecciones Estreptocócicas/inmunología , Streptococcus iniae/inmunología , Aglutinación , Animales , Calcio/metabolismo , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Inmunidad Innata , Lectinas/metabolismo , Lipopolisacáridos/inmunología , Poli I-C/inmunología , Receptores de Reconocimiento de Patrones/metabolismo
5.
Dev Comp Immunol ; 81: 279-290, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29247723

RESUMEN

C1r and C1s are serine proteases responsible for activating the classical complement pathway to initiate the complement cascade, which plays a crucial role in eliminating invading pathogenic microbes. In this study, cDNA sequences of C1r and C1s were identified from black rockfish and designated as SsC1r and SsC1s, respectively. In both sequences, two CUB domains, an EGF-like domain, two CCP domains, and a trypsin-like serine protease domain were identified. Multiple sequence alignments with known vertebrate homologs demonstrated that both sequences were highly conserved and, especially, the catalytic and substrate binding residues were completely conserved. In the constructed phylogenetic tree, C1r and C1s formed two separate clusters, which further branched into groups of related organisms. SsC1r and SsC1s joined with their respective teleostean clusters. Transcriptional analysis showed that the highest mRNA expression level was in the liver under normal physiological conditions. Significantly upregulated expression of both mRNAs in spleen and liver after pathologic stress, by intraperitoneal injection with different stimuli, suggested their vital role in immunity. The serine protease domains of SsC1r and SsC1s were cloned and the recombinant proteins were expressed and purified. A protease assay, conducted to confirm their functionality, indicated that both recombinant proteins had proteolytic activity. Taken together, these results indicate that SsC1r and SsC1s have significant properties to aid in the immunity of black rockfish by activating the complement system by proteolytic cleavage.


Asunto(s)
Complemento C1r/genética , Complemento C1s/genética , Proteínas de Peces/genética , Hígado/fisiología , Perciformes/inmunología , Animales , Clonación Molecular , Complemento C1r/metabolismo , Complemento C1s/metabolismo , Secuencia Conservada/genética , Proteínas de Peces/metabolismo , Inmunidad Innata , Perciformes/genética , Filogenia , Dominios Proteicos/genética , Proteolisis , Alineación de Secuencia , Transcriptoma , Vertebrados
6.
Dev Comp Immunol ; 67: 43-56, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27984102

RESUMEN

Elevated levels of ROS can cause serious intracellular damages by reacting readily with nucleic acids, proteins and lipids, thus triggering tissue damage and cell death. Thioredoxin system is one of the principal factors that maintain the intracellular redox balance via its antioxidant property. In this study, we characterized two new thioredoxin isoforms (SsTXN-like 1 and SsMtTXN-like) from black rockfish, Sebastes schlegelii. The molecular and structural characteristics, as well as the evolutionary relationships of SsTXN-like 1 and SsMtTXN-like confirmed that they belong to the thioredoxin superfamily. A classical thioredoxin domain was found in both proteins with a conserved redox-active site CXYC, however, only the precursor of SsMtTXN-like protein possessed a mitochondrial targeting signal. The results from insulin disulfide reduction activity assay demonstrated that their recombinant proteins are capable of reducing the disulfide bonds of oxidatively damaged proteins via their oxidoreductase activities. The free radical scavenging activity assay revealed the prominent hydroxyl and DPPH scavenging activities of rSsTXN-like 1 and rSsMtTXN-like in a dose-dependent manner. Transcriptional studies showed a broad distribution of SsTXN-like 1 and SsMtTXN-like transcripts in all the examined tissues. Significant (p < 0.05) up-regulations of both genes in immune-related tissues after LPS, poly I:C and Streptococcus iniae challenges reflect their critical role in redox homeostasis in black rockfish. Taken together, SsTXN-like 1 and SsMtTXN-like, as two active members of thioredoxin superfamily, have significant antioxidant properties to housekeep the redox potential during various stress conditions and innate immune response of Sebastes schlegelii.


Asunto(s)
Antioxidantes/metabolismo , Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Depuradores de Radicales Libres/metabolismo , Perciformes/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus iniae/inmunología , Tiorredoxinas/metabolismo , Animales , Evolución Biológica , Secuencia Conservada/genética , Proteínas de Peces/genética , Homeostasis , Inmunidad Innata , Oxidación-Reducción , Dominios Proteicos/genética , Isoformas de Proteínas/genética , Homología Estructural de Proteína , Tiorredoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA