RESUMEN
Drosophila melanogaster cellularization is a special form of cleavage that converts syncytial embryos into cellular blastoderms by partitioning the peripherally localized nuclei into individual cells. An early event in cellularization is the recruitment of nonmuscle myosin II ("myosin") to the leading edge of cleavage furrows, where myosin forms an interconnected basal array before reorganizing into individual cytokinetic rings. The initial recruitment and organization of basal myosin are regulated by a cellularization-specific gene, dunk, but the underlying mechanism is unclear. Through a genome-wide yeast two-hybrid screen, we identified anillin (Scraps in Drosophila), a conserved scaffolding protein in cytokinesis, as the primary binding partner of Dunk. Dunk colocalizes with anillin and regulates its cortical localization during the formation of cleavage furrows, while the localization of Dunk is independent of anillin. Furthermore, Dunk genetically interacts with anillin to regulate the basal myosin array during cellularization. Similar to Dunk, anillin colocalizes with myosin since the very early stage of cellularization and is required for myosin retention at the basal array, before the well-documented function of anillin in regulating cytokinetic ring assembly. Based on these results, we propose that Dunk regulates myosin recruitment and spatial organization during early cellularization by interacting with and regulating anillin.
Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Proteínas Contráctiles/metabolismo , Citocinesis/fisiología , Proteínas del Citoesqueleto/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo , ARN/metabolismoRESUMEN
The methylotrophic yeast Pichia pastoris has recently been engineered to express therapeutic glycoproteins with uniform human N-glycans at high titers. In contrast to the current art where producing therapeutic proteins in mammalian cell lines yields a final product with heterogeneous N-glycans, proteins expressed in glycoengineered P. pastoris can be designed to carry a specific, preselected glycoform. However, significant variability exists in fermentation performance between genotypically similar clones with respect to cell fitness, secreted protein titer, and glycan homogeneity. Here, we describe a novel, multidimensional screening process that combines high and medium throughput tools to identify cell lines producing monoclonal antibodies (mAbs). These cell lines must satisfy multiple selection criteria (high titer, uniform N-glycans and cell robustness) and be compatible with our large-scale production platform process. Using this selection process, we were able to isolate a mAb-expressing strain yielding a titer (after protein A purification) in excess of 1 g/l in 0.5-l bioreactors.