Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 9311-9317, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502926

RESUMEN

A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons. We have synthesized an antiaromatic porphyrin analogue, Ni(II) bis(pentafluorophenyl)norcorrole. Its dimer adopts a face-to-face stacked structure with an extremely short stacking distance of 2.97 Å. The close stacking originates from a multicenter four-electron bonding interaction between the two molecules. The bonding electrons were experimentally observed via synchrotron X-ray diffraction analysis and corroborated by theoretical calculations. The intermolecular interaction of the molecular orbitals imparts the stacked dimer with aromatic character that is distinctly different from that of its monomer.

2.
J Phys Chem B ; 128(8): 2000-2009, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38377516

RESUMEN

Cyclosporine A (CsA), a naturally derived biomaterial and physiologically active substance, is commonly used as an immunosuppressant. In this study, CsA was revealed to function as a chiral inducer of cholesteric liquid crystals (CLCs) with a high helical twisting power. CsA induced helical structures in 4-cyano-4'-pentylbiphenyl, a synthetic liquid crystal (LC) used for general purposes. Electrochemical polymerization in CLC with CsA was also performed. The polymer prepared in CLC showed electro-optical activity via chiral induction by CsA. Synchrotron X-ray diffraction measurements indicated that the polymer film prepared in the CLC formed in the manner of LC molecular arrangement through molecular form imprinting from the LC order, although the polymer exhibited no liquid crystallinity. The polymer showed structural color and laser light oscillation diffraction derived from its periodic structure. The anisotropy of the circularly polarized electron spin resonance signals for the resulting polymer with respect to the magnetic field was observed.

3.
Adv Sci (Weinh) ; 11(13): e2308270, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38268432

RESUMEN

Some rodlike organic molecules exhibit exceptionally high layered crystallinity when composed of a link between π-conjugated backbone (head) and alkyl chain (tail). These molecules are aligned side-by-side unidirectionally to form self-organized polar monomolecular layers, providing promising 2D materials and devices. However, their interlayer stacking arrangements have never been tunable, preventing the unidirectional arrangements of molecules in whole crystals. Here, it is demonstrated that polar/antipolar interlayer stacking can be systematically controlled by the alkyl carbon number n, when the molecules are designed to involve effectively weakened head-to-head affinity. They exhibit remarkable odd-even effect in the interlayer stacking: alternating head-to-head and tail-to-tail (antipolar) arrangement in odd-n crystals, and uniform head-to-tail (polar) arrangement in even-n crystals. The films show excellent field-effect transistor characteristics presenting unique polar/antipolar dependence and considerably improved subthreshold swing in the polar films. Additionally, the polar films present enhanced second-order nonlinear optical response along normal to the film plane. These findings are key for creating polarity-controlled optoelectronic materials and devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA