Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8019): 142-149, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926573

RESUMEN

Interindividual genetic variation affects the susceptibility to and progression of many diseases1,2. However, efforts to study how individual human brains differ in normal development and disease phenotypes are limited by the paucity of faithful cellular human models, and the difficulty of scaling current systems to represent multiple people. Here we present human brain Chimeroids, a highly reproducible, multidonor human brain cortical organoid model generated by the co-development of cells from a panel of individual donors in a single organoid. By reaggregating cells from multiple single-donor organoids at the neural stem cell or neural progenitor cell stage, we generate Chimeroids in which each donor produces all cell lineages of the cerebral cortex, even when using pluripotent stem cell lines with notable growth biases. We used Chimeroids to investigate interindividual variation in the susceptibility to neurotoxic triggers that exhibit high clinical phenotypic variability: ethanol and the antiepileptic drug valproic acid. Individual donors varied in both the penetrance of the effect on target cell types, and the molecular phenotype within each affected cell type. Our results suggest that human genetic background may be an important mediator of neurotoxin susceptibility and introduce Chimeroids as a scalable system for high-throughput investigation of interindividual variation in processes of brain development and disease.


Asunto(s)
Células-Madre Neurales , Organoides , Humanos , Organoides/efectos de los fármacos , Organoides/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Masculino , Linaje de la Célula/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/citología , Neurotoxinas/toxicidad , Fenotipo , Femenino , Susceptibilidad a Enfermedades , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Donantes de Tejidos , Línea Celular
2.
EMBO J ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886581

RESUMEN

Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.

3.
Mol Cell ; 80(6): 971-979.e7, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33248026

RESUMEN

CRISPR-Cas adaptive immune systems provide prokaryotes with defense against viruses by degradation of specific invading nucleic acids. Despite advances in the biotechnological exploitation of select systems, multiple CRISPR-Cas types remain uncharacterized. Here, we investigated the previously uncharacterized type I-D interference complex and revealed that it is a genetic and structural hybrid with similarity to both type I and type III systems. Surprisingly, formation of the functional complex required internal in-frame translation of small subunits from within the large subunit gene. We further show that internal translation to generate small subunits is widespread across diverse type I-D, I-B, and I-C systems, which account for roughly one quarter of CRISPR-Cas systems. Our work reveals the unexpected expansion of protein coding potential from within single cas genes, which has important implications for understanding CRISPR-Cas function and evolution.


Asunto(s)
Inmunidad Adaptativa/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Evolución Molecular , Proteínas Asociadas a CRISPR/inmunología , Células Procariotas/inmunología , Células Procariotas/virología , Biosíntesis de Proteínas , Virus/inmunología
4.
Am J Hum Genet ; 111(4): 729-741, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579670

RESUMEN

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Asunto(s)
Epilepsia Generalizada , Glutamato-Amoníaco Ligasa , Glutamina , Animales , Humanos , Ratones , Encéfalo/metabolismo , Epilepsia Generalizada/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamatos/metabolismo , Glutamina/genética , Glutamina/metabolismo
5.
Nat Methods ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965443

RESUMEN

Recent developments of sequencing-based spatial transcriptomics (sST) have catalyzed important advancements by facilitating transcriptome-scale spatial gene expression measurement. Despite this progress, efforts to comprehensively benchmark different platforms are currently lacking. The extant variability across technologies and datasets poses challenges in formulating standardized evaluation metrics. In this study, we established a collection of reference tissues and regions characterized by well-defined histological architectures, and used them to generate data to compare 11 sST methods. We highlighted molecular diffusion as a variable parameter across different methods and tissues, significantly affecting the effective resolutions. Furthermore, we observed that spatial transcriptomic data demonstrate unique attributes beyond merely adding a spatial axis to single-cell data, including an enhanced ability to capture patterned rare cell states along with specific markers, albeit being influenced by multiple factors including sequencing depth and resolution. Our study assists biologists in sST platform selection, and helps foster a consensus on evaluation standards and establish a framework for future benchmarking efforts that can be used as a gold standard for the development and benchmarking of computational tools for spatial transcriptomic analysis.

6.
Nature ; 591(7848): 99-104, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627875

RESUMEN

Neuropil is a fundamental form of tissue organization within the brain1, in which densely packed neurons synaptically interconnect into precise circuit architecture2,3. However, the structural and developmental principles that govern this nanoscale precision remain largely unknown4,5. Here we use an iterative data coarse-graining algorithm termed 'diffusion condensation'6 to identify nested circuit structures within the Caenorhabditis elegans neuropil, which is known as the nerve ring. We show that the nerve ring neuropil is largely organized into four strata that are composed of related behavioural circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy7,8 coupled with lineage-tracing and cell-tracking algorithms9,10 to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles that underlie the architecture and function of the nerve ring neuropil, and reveal a temporal progression of outgrowth-based on pioneer neurons-that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within the brain.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Neurópilo/química , Neurópilo/metabolismo , Algoritmos , Animales , Encéfalo/citología , Encéfalo/embriología , Caenorhabditis elegans/química , Caenorhabditis elegans/citología , Movimiento Celular , Difusión , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Neuritas/metabolismo , Neurópilo/citología , Células Receptoras Sensoriales/metabolismo
7.
Chem Rev ; 124(12): 7619-7673, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38683669

RESUMEN

The energy demand for traditional vapor-compressed technology for space cooling continues to soar year after year due to global warming and the increasing human population's need to improve living and working conditions. Thus, there is a growing demand for eco-friendly technologies that use sustainable or waste energy resources. This review discusses the properties of various refrigerants used for adsorption cooling applications followed by a brief discussion on the thermodynamic cycle. Next, sorbents traditionally used for cooling are reviewed to emphasize the need for advanced capture materials with superior properties to improve refrigerant sorption. The remainder of the review focus on studies using engineered nanoporous frameworks (ENFs) with various refrigerants for adsorption cooling applications. The effects of the various factors that play a role in ENF-refrigerant pair selection, including pore structure/dimension/shape, morphology, open-metal sites, pore chemistry and possible presence of defects, are reviewed. Next, in-depth insights into the sorbent-refrigerant interaction, and pore filling mechanism gained through a combination of characterization techniques and computational modeling are discussed. Finally, we outline the challenges and opportunities related to using ENFs for adsorption cooling applications and provide our views on the future of this technology.

8.
Nature ; 584(7819): 102-108, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32728215

RESUMEN

During ontogeny, proliferating cells become restricted in their fate through the combined action of cell-type-specific transcription factors and ubiquitous epigenetic machinery, which recognizes universally available histone residues or nucleotides in a context-dependent manner1,2. The molecular functions of these regulators are generally well understood, but assigning direct developmental roles to them is hampered by complex mutant phenotypes that often emerge after gastrulation3,4. Single-cell RNA sequencing and analytical approaches have explored this highly conserved, dynamic period across numerous model organisms5-8, including mouse9-18. Here we advance these strategies using a combined zygotic perturbation and single-cell RNA-sequencing platform in which many mutant mouse embryos can be assayed simultaneously, recovering robust  morphological and transcriptional information across a panel of ten essential regulators. Deeper analysis of central Polycomb repressive complex (PRC) 1 and 2 components indicates substantial cooperativity, but distinguishes a dominant role for PRC2 in restricting the germline. Moreover, PRC mutant phenotypes emerge after gross epigenetic and transcriptional changes within the initial conceptus prior to gastrulation. Our experimental framework may eventually lead to a fully quantitative view of how cellular diversity emerges using an identical genetic template and from a single totipotent cell.


Asunto(s)
Epigénesis Genética , Gástrula/embriología , Gástrula/metabolismo , Gastrulación/genética , Animales , Linaje de la Célula , Femenino , Gástrula/citología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Mutación , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Análisis de la Célula Individual , Transcripción Genética
9.
Traffic ; 24(2): 95-107, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36533718

RESUMEN

G protein-coupled receptors (GPCRs) are vital cellular signaling machinery and currently represent ~40% drug targets. Endocytosis of GPCRs is an important process that allows stringent spatiotemporal control over receptor population on the cell surface. Although the role of proteins in GPCR endocytosis is well addressed, the contribution of membrane lipids in this process is rather unexplored. Sphingolipids are essential functional lipids in higher eukaryotes and are implicated in several neurological functions. To understand the role of sphingolipids in GPCR endocytosis, we subjected cells expressing human serotonin1A receptors (an important neurotransmitter GPCR involved in cognitive and behavioral functions) to metabolic sphingolipid depletion using fumonisin B1 , an inhibitor of sphingolipid biosynthetic pathway. Our results, using flow cytometric analysis and confocal microscopic imaging, show that sphingolipid depletion inhibits agonist-induced endocytosis of the serotonin1A receptor in a concentration-dependent manner, which was restored when sphingolipid levels were replenished. We further show that there was no change in the internalization of transferrin, a marker for clathrin-mediated endocytosis, under sphingolipid-depleted condition, highlighting the specific requirement of sphingolipids for endocytosis of serotonin1A receptors. Our results reveal the regulatory role of sphingolipids in GPCR endocytosis and highlight the importance of neurotransmitter receptor trafficking in health and disease.


Asunto(s)
Serotonina , Esfingolípidos , Humanos , Membrana Celular/metabolismo , Endocitosis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Esfingolípidos/metabolismo
10.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36601773

RESUMEN

TIM22 pathway cargos are essential for sustaining mitochondrial homeostasis as an excess of these proteins leads to proteostatic stress and cell death. Yme1 is an inner membrane metalloprotease that regulates protein quality control with chaperone-like and proteolytic activities. Although the mitochondrial translocase and protease machinery are critical for organelle health, their functional association remains unexplored. The present study unravels a novel genetic connection between the TIM22 complex and YME1 machinery in Saccharomyces cerevisiae that is required for maintaining mitochondrial health. Our genetic analyses indicate that impairment in the TIM22 complex rescues the respiratory growth defects of cells without Yme1. Furthermore, Yme1 is essential for the stability of the TIM22 complex and regulates the proteostasis of TIM22 pathway substrates. Moreover, impairment in the TIM22 complex suppressed the mitochondrial structural and functional defects of Yme1-devoid cells. In summary, excessive levels of TIM22 pathway substrates could be one of the reasons for respiratory growth defects of cells lacking Yme1, and compromising the TIM22 complex can compensate for the imbalance in mitochondrial proteostasis caused by the loss of Yme1.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteostasis , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteasas ATP-Dependientes
11.
Nano Lett ; 24(26): 7825-7832, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885473

RESUMEN

Vertical gate-all-around (V-GAA) represents the ultimate configuration in the forthcoming transistor industry, but it still encounters challenges in the semiconductor community. This paper introduces, for the first time, a dual-input logic gate circuit achieved using 3D vertical transistors with nanoscale sub-20-nm GAA, employing a novel technique for creating contacts and patterning metallic lines at the bottom level without the conventional lift-off process. This involves a two-step oxidation process: patterning the first field oxide to form bottom metal lines and then creating the gate oxide layer on nanowires (NWs), followed by selective removal from the top and bottom of the nanostructures. VGAA-NW transistors, fabricated using the lift-off-free approach, exhibit improved yield and reduced access resistance, leading to an enhanced drive current while maintaining good immunity against short-channel effects. Finally, elementary two-input logic gates within a single cell, using VNW transistors, demonstrate novel possibilities in advanced logic circuitry design and routing options in 3D.

12.
Genes Dev ; 31(1): 12-17, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28115466

RESUMEN

Global DNA demethylation is a hallmark of embryonic epigenetic reprogramming. However, embryos engage noncanonical DNA methylation maintenance mechanisms to ensure inheritance of exceptional epigenetic germline features to the soma. Besides the paradigmatic genomic imprints, these exceptions remain ill-defined, and the mechanisms ensuring demethylation resistance in the light of global reprogramming remain poorly understood. Here we show that the Y-linked gene Rbmy1a1 is highly methylated in mature sperm and resists DNA demethylation post-fertilization. Aberrant hypomethylation of the Rbmy1a1 promoter results in its ectopic activation, causing male-specific peri-implantation lethality. Rbmy1a1 is a novel target of the TRIM28 complex, which is required to protect its repressive epigenetic state during embryonic epigenetic reprogramming.


Asunto(s)
Metilación de ADN/genética , Desarrollo Embrionario/genética , Epigénesis Genética/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Animales , Células Cultivadas , Reprogramación Celular/genética , Implantación del Embrión/genética , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica/genética , Masculino , Mutación , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética , Espermatozoides/metabolismo , Proteína 28 que Contiene Motivos Tripartito
13.
Kidney Int ; 105(2): 281-292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923131

RESUMEN

Lesion scores on procurement donor biopsies are commonly used to guide organ utilization for deceased-donor kidneys. However, frozen sections present challenges for histological scoring, leading to inter- and intra-observer variability and inappropriate discard. Therefore, we constructed deep-learning based models to recognize kidney tissue compartments in hematoxylin & eosin-stained sections from procurement needle biopsies performed nationwide in years 2011-2020. To do this, we extracted whole-slide abnormality features from 2431 kidneys and correlated with pathologists' scores and transplant outcomes. A Kidney Donor Quality Score (KDQS) was derived and used in combination with recipient demographic and peri-transplant characteristics to predict graft loss or assist organ utilization. The performance on wedge biopsies was additionally evaluated. Our model identified 96% and 91% of normal/sclerotic glomeruli respectively; 94% of arteries/arterial intimal fibrosis; 90% of tubules. Whole-slide features of Sclerotic Glomeruli (GS)%, Arterial Intimal Fibrosis (AIF)%, and Interstitial Space Abnormality (ISA)% demonstrated strong correlations with corresponding pathologists' scores of all 2431 kidneys, but had superior associations with post-transplant estimated glomerular filtration rates in 2033 and graft loss in 1560 kidneys. The combination of KDQS and other factors predicted one- and four-year graft loss in a discovery set of 520 kidneys and a validation set of 1040 kidneys. By using the composite KDQS of 398 discarded kidneys due to "biopsy findings", we suggest that if transplanted, 110 discarded kidneys could have had similar survival to that of other transplanted kidneys. Thus, our composite KDQS and survival prediction models may facilitate risk stratification and organ utilization while potentially reducing unnecessary organ discard.


Asunto(s)
Aprendizaje Profundo , Trasplante de Riñón , Obtención de Tejidos y Órganos , Humanos , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Selección de Donante , Riñón/patología , Donantes de Tejidos , Biopsia , Fibrosis , Supervivencia de Injerto
14.
Funct Integr Genomics ; 24(4): 117, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918231

RESUMEN

The role of messenger RNA (mRNA) in biological systems is extremely versatile. However, it's extremely short half-life poses a fundamental restriction on its application. Moreover, the translation efficiency of mRNA is also limited. On the contrary, circular RNAs, also known as circRNAs, are a common and stable form of RNA found in eukaryotic cells. These molecules are synthesized via back-splicing. Both synthetic circRNAs and certain endogenous circRNAs have the potential to encode proteins, hence suggesting the potential of circRNA as a gene expression machinery. Herein, we aim to summarize all engineering aspects that allow exogenous circular RNA (circRNA) to prolong the time that proteins are expressed from full-length RNA signals. This review presents a systematic engineering approach that have been devised to efficiently assemble circRNAs and evaluate several aspects that have an impact on protein production derived from. We have also reviewed how optimization of the key components of circRNAs, including the topology of vector, 5' and 3' untranslated sections, entrance site of the internal ribosome, and engineered aptamers could be efficiently impacting the translation machinery for molecular and metabolic reprogramming. Collectively, molecular and metabolic reprogramming present a novel way of regulating distinctive cellular features, for instance growth traits to neoplastic cells, and offer new possibilities for therapeutic inventions.


Asunto(s)
ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Animales , Biosíntesis de Proteínas , Reprogramación Metabólica
15.
Chemphyschem ; : e202400283, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38634178

RESUMEN

Halocarbons have important industrial applications, however they contribute to global warming and the fact that they can cause ozone depletion. Hence, the techniques that can capture and recover the used halocarbons with energy efficiency methods have recently received greater attention. In this contribution, we report the capture of dichlorodifluoromethane (R12), which has high global warming and ozone depletion potential, using covalent organic polymers (COPs). The defect-engineered COPs were synthesized and demonstrated outstanding sorption capacities, ~226 wt% of R12 combined with linear-shaped adsorption isotherms. We further identified the plausible microscopic adsorption mechanism of the investigated COPs via grand canonical Monte Carlo simulations applied to non-defective and a collection of atomistic models of the defective COPs. The modeling work suggests that significant R12 adsorption is attributed to a gradual increment of porosities due to isolated/interconnected micro-/meso-pore channels and the change of the long-range ordering of both COPs. The successive hierarchical-pore-filling mechanism promotes R12 molecular adsorption via moderate van der Waals adsorbate-adsorbent interactions in the micropores of both COPs at low pressure followed by adsorbate-adsorbate interactions in the extra-voids created at moderate to high pressure ranges. This continuous pore-filling mechanism makes defective COPs as promising sorbents for halocarbon adsorption.

16.
J Microsc ; 294(3): 420-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747464

RESUMEN

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

17.
Environ Res ; 259: 119531, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960358

RESUMEN

Rise in climate change-induced drought occurrences have amplified pollution of metal(loid)s, deteriorated soil quality, and deterred growth of crops. Rice straw-derived biochars (RSB) and cow manure-enriched biochars (CEB) were used in the investigation (at doses of 0%, 2.5%, 5%, and 7.5%) to ameliorate the negative impacts of drought, improve soil fertility, minimize arsenic pollution, replace agro-chemical application, and maximize crop yields. Even in soils exposed to severe droughts, 3 months of RSB and CEB amendment (at 7.5% dose) revealed decreased bulk density (13.7% and 8.9%), and increased cation exchange capacity (6.0% and 6.3%), anion exchange capacity (56.3% and 28.0%), porosity (12.3% and 7.9%), water holding capacity (37.5% and 12.5%), soil respiration (17.8% and 21.8%), and nutrient contents (especially N and P). Additionally, RSB and CEB decreased mobile (30.3% and 35.7%), bio-available (54.7% and 45.3%), and leachable (55.0% and 56.5%) fractions of arsenic. Further, pot experiments with Bengal gram and coriander plants showed enhanced growth (62-188% biomass and 90-277% length) and reduced arsenic accumulation (49-54%) in above ground parts of the plants. Therefore, biochar application was found to improve physico-chemical properties of soil, minimize arsenic contamination, and augment crop growth even in drought-stressed soils. The investigation suggests utilisation of cow manure for eco-friendly fabrication of nutrient-rich CEB, which could eventually promote sustainable agriculture and circular economy. With the increasing need for sustainable agricultural practices, the use of biochar could provide a long-term solution to enhance soil quality, mitigate the effects of climate change, and ensure food security for future generations. Future research should focus on optimizing biochar application across various soil types and climatic conditions, as well as assessing its long-term effectiveness.

18.
Environ Res ; 252(Pt 1): 118786, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537743

RESUMEN

Industrial wastewater contains a wide range of pollutants that, if released directly into natural ecosystems, have the potential to pose serious risks to the environment.This study aims to investigate sustainable and efficient approaches for treating tannery wastewater, employing a combination of hyphenated Fenton oxidation and adsorption processes. Rigorous analyses were conducted on wastewater samples, evaluating parameters like COD, sulphide, NH3-N, PO43-, NO3-, and Cr(VI). The performance of this adsorbent material was gauged through column adsorption experiments. A comprehensive characterization of the adsorbent was undertaken using techniques such as SEM, EDX, BET, FTIR, XRD, and LIBS. The study delved into varying operational parameters like bed depth (ranging from 3.5 to 9.5 cm) diameter (2.5 cm) and influent flow rate (ranging from 5 to 15mLmin-1). The experimental outcomes revealed that increasing the bed depth and decreasing the influent flow rate significantly bolstered the adsorption column's effectiveness. Breakthrough curves obtained were fitted with different models, including the Thomas and Yoon-Nelson models. The most optimal column performance was achieved with a bed height of 10.5 cm and a flow rate of 5mLmin-1. The combined process achieved removal efficiencies of 94.5% for COD, 97.4% for sulphide, 96.2% for NH3-N, 83.1% for NO3-, 79.3% for PO43-, and 96.9% for Cr(VI) in tannery effluent. This research presents a notable stride toward the development of sustainable and efficient strategies for tannery wastewater treatment.


Asunto(s)
Carbón Orgánico , Residuos Industriales , Curtiembre , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Residuos Industriales/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Aguas Residuales/análisis , Madera/química , Hierro/química , Peróxido de Hidrógeno/química
19.
Curr Genomics ; 25(2): 105-119, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38751600

RESUMEN

Background: The plasma virome represents the overall composition of viral sequences present in it. Alteration in plasma virome has been reported in treatment naïve and immunocompromised (CD4 count < 200) people with HIV (PWH). However, the effect of ART on virome composition in PWH on ART with preserved CD4 counts is poorly understood. Objectives: We aimed to assess the alterations in plasma virome in PWH on ART in comparison to HIV-negative uninfected controls and to further investigate possible associations of plasma viruses with inflammation and immune dysfunction, namely, immunosenescence and immune exhaustion. Methods: Plasma viral DNA from PWH on ART and controls was used for sequencing on the Illumina Nextseq500 platform, followed by the identification of viral sequences using an automated pipeline, VIROMATCH. Multiplex cytokine assay was performed to measure the concentrations of various cytokines in plasma. Immunophenotyping was performed on PBMCs to identify T cell markers of immunosenescence and immune exhaustion. Results: In our observational, cross-sectional pilot study, chronically infected PWH on ART had significantly different viral species compositions compared to controls. The plasma virome of PWH showed a significantly high relative abundance of species Human gammaherpesvirus 4, also known as Epstein-Barr virus (EBV). Moreover, EBV emerged as a significant viral taxon differentially enriched in PWH on ART, which further correlated positively with the exhaustion phenotype of T cells and significantly increased TNF-α in PWH on ART. Additionally, a significantly increased proportion of senescent T cells and IL-8 cytokine was detected in PWH on ART. Conclusion: Altered plasma virome influenced the inflammatory response and T-cell phenotype in PWH on ART.

20.
Can J Anaesth ; 71(4): 503-510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243098

RESUMEN

PURPOSE: Nasotracheal intubation (NTI) is required for surgery in oropharyngeal (OP) carcinoma patients, but it may be challenging because of distorted anatomy, mucosal congestion, and increased risk of bleeding. Flexible bronchoscopy (FB)-guided NTI is preferred in these cases but has limitations. In this randomized controlled study, we sought to compare C-MAC® D-BLADE-guided videolaryngoscopy (VL) (Karl Storz SE & Co. KG, Tuttlingen, Germany) with FB for NTI under general anesthesia in patients with OP carcinomas. METHODS: We randomized a total of 100 patients with OP carcinoma and El-Ganzouri's risk index (EGRI) < 7 to undergo NTI under general anesthesia with FB (n = 50) or C-MAC D-BLADE-guided VL (n = 50). The primary outcome was the total intubation time. We also recorded the time to glottis view, nasal intubation difficulty scale (NIDS) score, best percentage of glottis opening score, and complications. RESULTS: The median [interquartile range (IQR)] total intubation time was shorter with VL than with FB (total intubation time, 38 [26-43] sec vs 60 [52-65] sec; difference, -20 sec [95% confidence interval (CI), -27 to -11]; P < 0.001). Similarly, the median [IQR] time to glottis view was shorter with VL compared to FB (8 [6-9] sec vs 22 [14-25] sec; difference, -13 sec [95% CI, -17 to -10]; P < 0.001). The median NIDS score was higher with VL (difference, 2 [95% CI, 2 to 3]; P < 0.001). The incidences of airway trauma (two cases with FB vs seven with VL; P = 0.30) and postoperative sore throat (ten cases in both groups; P = 0.56) were similar. CONCLUSION: Compared to FB, C-MAC D-BLADE-based VL reduced the total time for nasal intubation oropharyngeal carcinoma patients, potentially representing an acceptable alternative in selected cases. TRIAL REGISTRATION: CTRI.nic.in (2018/11/0162830); first submitted 8 November 2018.


RéSUMé: OBJECTIF: L'intubation nasotrachéale est nécessaire pour la chirurgie chez la patientèle atteinte de carcinome oropharyngé, mais elle peut être difficile en raison d'une anatomie déformée, d'une congestion des muqueuses et d'un risque accru de saignement. Dans ces cas, il est préférable d'utiliser une intubation nasotrachéale guidée par bronchoscopie flexible (BF), mais cette modalité a ses limites. Dans cette étude randomisée contrôlée, nous avons cherché à comparer la vidéolaryngoscopie guidée par lame D-BLADE C-MAC® (VL) (Karl Storz SE & Co. KG, Tuttlingen, Allemagne) à la BF pour réaliser l'intubation nasotrachéale sous anesthésie générale chez les patient·es ayant un carcinome oropharyngé. MéTHODE: Au total, nous avons randomisé 100 personnes atteintes d'un carcinome oropharyngé et présentant un indice de risque d'El-Ganzouri (EGRI) < 7 à bénéficier d'une intubation nasotrachéale sous anesthésie générale par BF (n = 50) ou par VL guidée par lame D-BLADE C-MAC (n = 50). Le critère d'évaluation principal était le temps d'intubation total. Nous avons également enregistré le temps écoulé jusqu'à la visualisation de la glotte, le score sur l'échelle de difficulté de l'intubation nasale (NIDS), le meilleur pourcentage de score d'ouverture de la glotte et les complications. RéSULTATS: La durée totale d'intubation médiane [écart interquartile (ÉIQ)] était plus courte avec la VL qu'avec la BF (durée totale d'intubation, 38 [26­43] sec vs 60 [52 à 65] secondes; différence, −20 sec [intervalle de confiance (IC) à 95 %, −27 à −11]; P < 0,001). De même, le temps médian [ÉIQ] jusqu'à la visualisation de la glotte était plus court avec la VL qu'avec la BF (8 [6­9] sec vs 22 [14 à 25] secondes; différence, −13 sec [IC 95 %, −17 à −10]; P < 0,001). Le score médian sur l'échelle NIDS était plus élevé avec la VL (différence, 2 [IC 95 %, 2 à 3]; P < 0,001). L'incidence des traumatismes des voies aériennes (deux cas avec la BF vs sept avec la VL; P = 0,30) et le mal de gorge postopératoire (dix cas dans les deux groupes; P = 0,56) étaient similaires. CONCLUSION: Par rapport à la BF, la VL guidée par lame D-BLADE C-MAC a réduit le temps total d'intubation nasale pour les personnes atteintes d'un carcinome oropharyngé, ce qui représente potentiellement une alternative acceptable dans certains cas. ENREGISTREMENT DE L'éTUDE: CTRI.nic.in (2018/11/0162830); première soumission le 8 novembre 2018.


Asunto(s)
Carcinoma , Laringoscopios , Humanos , Laringoscopía , Broncoscopía , Grabación en Video , Intubación Intratraqueal , Anestesia General
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA