Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biochemistry ; 60(8): 597-606, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33591178

RESUMEN

The multifunctional protein p53 is the central molecular sensor of cellular stresses. The canonical function of p53 is to transcriptionally activate target genes in response to, for example, DNA damage that may trigger apoptosis. Recently, p53 was also found to play a role in the regulation of necrosis, another type of cell death featured by the mitochondrial permeability transition (mPT). In this process, p53 directly interacts with the mPT regulator cyclophilin D, the detailed mechanism of which however remains poorly understood. Here, we report a comprehensive computational investigation of the p53-cyclophilin D interaction using molecular dynamics simulations and associated analyses. We have identified the specific cyclophilin D binding site on p53 that is located at proline 151 in the DNA binding domain. As a peptidyl-prolyl isomerase, cyclophilin D binds p53 and catalyzes the cis-trans isomerization of the peptide bond preceding proline 151. We have also characterized the effect of such an isomerization and found that the p53 domain in the cis state is overall more rigid than the trans state except for the local region around proline 151. Dynamical changes upon isomerization occur in both local and distal regions, indicating an allosteric effect elicited by the isomerization. We present potential allosteric communication pathways between proline 151 and distal sites, including the DNA binding surface. Our work provides, for the first time, a model for how cyclophilin D binds p53 and regulates its activity by switching the configuration of a specific site.


Asunto(s)
Ciclofilinas/metabolismo , ADN/metabolismo , Simulación de Dinámica Molecular , Prolina/química , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , Catálisis , Ciclofilinas/química , Ciclofilinas/genética , ADN/química , Humanos , Prolina/metabolismo , Dominios Proteicos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
2.
J Biol Chem ; 292(16): 6512-6528, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28246171

RESUMEN

Hydrogen sulfide is a critical signaling molecule, but high concentrations cause cellular toxicity. A four-enzyme pathway in the mitochondrion detoxifies H2S by converting it to thiosulfate and sulfate. Recent studies have shown that globins like hemoglobin and myoglobin can also oxidize H2S to thiosulfate and hydropolysulfides. Neuroglobin, a globin enriched in the brain, was reported to bind H2S tightly and was postulated to play a role in modulating neuronal sensitivity to H2S in conditions such as stroke. However, the H2S reactivity of the coordinately saturated heme in neuroglobin is expected a priori to be substantially lower than that of the 5-coordinate hemes present in myoglobin and hemoglobin. To resolve this discrepancy, we explored the role of the distal histidine residue in muting the reactivity of human neuroglobin toward H2S. Ferric neuroglobin is slowly reduced by H2S and catalyzes its inefficient oxidative conversion to thiosulfate. Mutation of the distal His64 residue to alanine promotes rapid binding of H2S and its efficient conversion to oxidized products. X-ray absorption, EPR, and resonance Raman spectroscopy highlight the chemically different reaction options influenced by the distal histidine ligand. This study provides mechanistic insights into how the distal heme ligand in neuroglobin caps its reactivity toward H2S and identifies by cryo-mass spectrometry a range of sulfide oxidation products with 2-6 catenated sulfur atoms with or without oxygen insertion, which accumulate in the absence of the His64 ligand.


Asunto(s)
Globinas/química , Sulfuro de Hidrógeno/química , Proteínas del Tejido Nervioso/química , Catálisis , Cristalografía por Rayos X , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Hemo/química , Hemoglobinas/química , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Espectrometría de Masas , Mutación , Mioglobina/química , Neuroglobina , Oxígeno/química , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Espectrometría Raman , Sulfuros/química , Tiosulfatos/química , Trombina/química
3.
J Am Chem Soc ; 138(27): 8476-88, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27310035

RESUMEN

Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Mioglobina/metabolismo , Animales , Caballos , Hierro/metabolismo , Cinética , Oxidación-Reducción , Unión Proteica
4.
J Phys Chem B ; 126(51): 10844-10853, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36529932

RESUMEN

Mitochondria are the powerhouse of a cell, whose disruption due to mitochondrial pore opening can cause cell death, leading to necrosis and many other diseases. The peptidyl-prolyl cis-trans isomerase cyclophilin D (CypD) is a key player in the regulation of the mitochondrial pore. The activity of CypD can be modulated by the post-translational modification (PTM). However, the detailed mechanism of this functional modulation is not well understood. Here, we investigate the catalytic mechanism of unmodified and modified CypD by calculating the reaction free energy profiles and characterizing the function-related conformational dynamics using molecular dynamics simulations and associated analyses. Our results show that unmodified and modified CypD considerably lower the isomerization free energy barrier compared to a free peptide substrate, supporting the catalytic activity of CypD in the simulation systems. The unmodified CypD reduces the free energy difference between the cis and trans states of the peptide substrate, suggesting a stronger binding affinity of CypD toward cis, consistent with experiments. In contrast, phosphorylated CypD further stabilizes trans, leading to a lower catalytic rate in the trans-to-cis direction. The differential catalytic activities of the unmodified and phosphorylated CypD are due to a significant shift of the conformational ensemble upon phosphorylation under different functional states. Interestingly, the local flexibility is both reduced and enhanced at distinct regions by phosphorylation, which is explained by a "seesaw" model of flexibility modulation. The allosteric pathway between the phosphorylation site and a distal site displaying substantial conformational changes upon phosphorylation is also identified, which is influenced by the presence of the substrate or the substrate conformation. Similar conclusions are obtained for the acetylation of CypD using the same peptide substrate and the influence of substrate sequence is also examined. Our work may serve as the basis for the understanding of other PTMs and PTM-initiated allosteric regulations in CypD.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Peptidil-Prolil Isomerasa F/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA