Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38506287

RESUMEN

We use a time-of-flight-based velocity map imaging method to look into the dissociative electron attachment to a linear OCS molecule at electron beam energies ranging from 4.5 to 8.5 eV. The conical time-gated wedge slice imaging method is utilized to extract fragments' slice images, kinetic energy (KE), and angular distributions, which provide a complete kinematic understanding of this experiment on the dissociative electron attachment process. We observe that the formation of S- is relatively higher than the O- product. Three distinct dissociative KE bands of S-/OCS have been observed for the 5.0 and 6.5 eV resonance positions. We notice a prominent rovibrationally coupled bimodality for each KE band in the variation of the most probable KE values. When the electron energy is changed from 5.5 to 6.0 eV, we observed vibronic intensity borrowing in the highest momentum band of S- via the Σ â†’ Π symmetric dipole-forbidden transitions within the 1.5 eV energy gap. Multiple peaks in the angular distributions of S- and their modeling indicate the presence of Renner-Teller vibronic splitting. Using Q-Chem's implemented complex absorbing potential-equation of motion-electron affinity coupled cluster singles and doubles aug-cc-pVDZ+4s3p level of multireference-based electronic structure theory, we confirm the presence of OCS temporary negative ion bending vibrations and Renner-Teller vibronic splittings for the Π symmetric states. Additionally, we notice the presence of a non-radiative predissociation continuum (bringing down the rotational spectrum) and speed-dependent angular anisotropy in the S- fragmentation. Our findings at the resonance of OCS at 6.5 eV closely align with the prediction of vibronic intensity borrowing by Orlandi and Siebrand [J. Chem. Phys. 58, 4513 (1973)].

2.
J Chem Phys ; 158(15)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37094022

RESUMEN

We study the electron-induced ion-pair dissociation to gas-phase oxygen molecules using a state-of-the-art velocity-map ion-imaging technique. The analysis is entirely based on the conical time-gated wedge-shaped velocity slice images of O-/O2 nascent anionic fragments, and the resulting observations are in favor of Van Brunt et al.'s report [R. J. Van Brunt and L. J. Kieffer, J. Chem. Phys. 60, 3057 (1974)]. A new image reconstruction method, Jacobian over parallel slicing, is introduced to overcome the drawback of ion exaggeration in determining the kinetic energy distribution from the time-gated parallel slicing technique, which offers an alternative approach to the wedge slicing method. Most importantly, the role of the quintet-heavy Rydberg state has been drawn out to the complex ion-pair formalism. The extracted kinetic energy and angular distributions from the wedge slice images reveal a high momentum transfer during the ion-pair dissociation process, which could be the finest rationale to observe the breakdown of dipole Born approximation driven by multipole moment associated with the incident electron beam. Three distinct dissociative momentum bands have been precisely identified for O- dissociation. However, radiationless Rydberg's predissociation continuum (≥15%) has become an inherent character of electron-induced ion-pair dissociation, which could be dealt with using the beyond Born-Oppenheimer treatment. The incoherent sum of Σ and Π symmetric-associated ion-pair final states has been precisely identified by modeling the angular distribution of O-/O2 for each of the kinetic energy bands. A negligibly small amount of forward-backward asymmetry is observed in the angular distribution of O-/O2, which might be explained by the dissociative state-specific quantum coherence mechanism as reported [Krishnakumar et al., Nat. Phys. 14, 149 (2018); Kumar et al., arXiv:2206.15024 (2022)] by Prabhudesai et al.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA