Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 43(1): 55-85, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37507626

RESUMEN

Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.


Asunto(s)
Anticarcinógenos , Neoplasias Colorrectales , Estilbenos , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Transducción de Señal , Factores de Transcripción , Anticarcinógenos/farmacología , Neoplasias Colorrectales/patología , Estilbenos/farmacología , Estilbenos/uso terapéutico
2.
Cancer Metastasis Rev ; 43(1): 293-319, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38438800

RESUMEN

Metabolic reprogramming, a hallmark of cancer, allows cancer cells to adapt to their specific energy needs. The Warburg effect benefits cancer cells in both hypoxic and normoxic conditions and is a well-studied reprogramming of metabolism in cancer. Interestingly, the alteration of other metabolic pathways, especially lipid metabolism has also grabbed the attention of scientists worldwide. Lipids, primarily consisting of fatty acids, phospholipids and cholesterol, play essential roles as structural component of cell membrane, signalling molecule and energy reserves. This reprogramming primarily involves aberrations in the uptake, synthesis and breakdown of lipids, thereby contributing to the survival, proliferation, invasion, migration and metastasis of cancer cells. The development of resistance to the existing treatment modalities poses a major challenge in the field of cancer therapy. Also, the plasticity of tumor cells was reported to be a contributing factor for the development of resistance. A number of studies implicated that dysregulated lipid metabolism contributes to tumor cell plasticity and associated drug resistance. Therefore, it is important to understand the intricate reprogramming of lipid metabolism in cancer cells. In this review, we mainly focused on the implication of disturbed lipid metabolic events on inducing tumor cell plasticity-mediated drug resistance. In addition, we also discussed the concept of lipid peroxidation and its crucial role in phenotypic switching and resistance to ferroptosis in cancer cells. Elucidating the relationship between lipid metabolism, tumor cell plasticity and emergence of resistance will open new opportunities to develop innovative strategies and combinatorial approaches for the treatment of cancer.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias , Humanos , Plasticidad de la Célula , Neoplasias/patología , Resistencia a Antineoplásicos , Colesterol/metabolismo
3.
Cancer Metastasis Rev ; 43(1): 321-362, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38517618

RESUMEN

Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Plasticidad de la Célula/fisiología , Neoplasias/patología , Transducción de Señal , Transición Epitelial-Mesenquimal/fisiología , Resistencia a Antineoplásicos , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Madre Neoplásicas/patología
4.
Cell Mol Life Sci ; 81(1): 78, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334807

RESUMEN

Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Estudios Prospectivos , Calidad de Vida , Neoplasias Hematológicas/patología , Receptores Citoplasmáticos y Nucleares
5.
J Cell Mol Med ; 28(7): e18150, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494866

RESUMEN

The anti-apoptotic proteins, Bcl-2 and Survivin, are consistently overexpressed in numerous human malignancies, notably in colorectal cancer. 2,4-Di-tert-butylphenol (2,4-DTBP) is a naturally occurring phenolic compound known for its diverse biological activities, including anti-cancer properties. The mechanism behind 2,4-DTBP-induced inhibition of cell proliferation and apoptosis in human colorectal cancer cells, specifically regarding Bcl-2 and Survivin, remains to be elucidated. In this study, we employed both in silico and in vitro methodologies to underpin this interaction at the molecular level. Molecular docking demonstrated a substantial binding affinity of 2,4-DTBP towards Bcl-2 (ΔG = -9.8 kcal/mol) and Survivin (ΔG = -5.6 kcal/mol), suggesting a potential inhibitory effect. Further, molecular dynamic simulations complemented by MM-GBSA calculations confirmed the significant binding of 2,4-DTBP with Bcl-2 (dGbind = -54.85 ± 6.79 kcal/mol) and Survivin (dGbind = -32.36 ± 1.29 kcal/mol). In vitro assays using HCT116 colorectal cancer cells revealed that 2,4-DTBP inhibited proliferation and promoted apoptosis in both a dose- and time-dependent manner. Fluorescence imaging and scanning electron microscopy illustrated the classical features associated with apoptosis upon 2,4-DTBP exposure. Cell cycle analysis through flow cytometry highlighted a G1 phase arrest and apoptosis assay demonstrated increased apoptotic cell population. Notably, western blotting results indicated a decreased expression of Bcl-2 and Survivin post-treatment. Considering the cytoprotective roles of Bcl-2 and Survivin through the inhibition of mitochondrial dysfunction, our findings of disrupted mitochondrial bioenergetics, characterized by reduced ATP production and oxygen consumption, further accentuate the functional impairment of these proteins. Overall, the integration of in silico and in vitro data suggests that 2,4-DTBP holds promise as a therapeutic agent targeting Bcl-2 and Survivin in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Fenoles , Humanos , Survivin , Simulación del Acoplamiento Molecular , Proliferación Celular
6.
Cancer Metastasis Rev ; 42(3): 765-822, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36482154

RESUMEN

Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.


Asunto(s)
Neoplasias , Receptores Citoplasmáticos y Nucleares , Humanos , Factores de Transcripción , Neoplasias/tratamiento farmacológico , Transducción de Señal
7.
Pharmacol Res ; 203: 107167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599470

RESUMEN

Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.


Asunto(s)
Neoplasias , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Animales , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismo
8.
Phytother Res ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353331

RESUMEN

Chemoresistance is the adaptation of cancer cells against therapeutic agents. When exhibited by cancer cells, chemoresistance helps them to avoid apoptosis, cause relapse, and metastasize, making it challenging for chemotherapeutic agents to treat cancer. Various strategies like dosage modification of drugs, nanoparticle-based delivery of chemotherapeutics, antibody-drug conjugates, and so on are being used to target and reverse chemoresistance, one among such is combination therapy. It uses the combination of two or more therapeutic agents to reverse multidrug resistance and improve the effects of chemotherapy. Phytochemicals are known to exhibit chemosensitizing properties and are found to be effective against various cancers. Tocotrienols (T3) and tocopherols (T) are natural bioactive analogs of vitamin E, which exhibit important medicinal value and potential curative properties apart from serving as an antioxidant and nutrient supplement. Notably, T3 exhibits a variety of pharmacological activities like anticancer, anti-inflammatory, antiproliferative, and so on. The chemosensitizing property of tocotrienol is exhibited by modulating several signaling pathways and molecular targets involved in cancer cell survival, proliferation, invasion, migration, and metastasis like NF-κB, STATs, Akt/mTOR, Bax/Bcl-2, Wnt/ß-catenin, and many more. T3 sensitizes cancer cells to chemotherapeutic drugs including cisplatin, doxorubicin, and paclitaxel increasing drug concentration and cytotoxicity. Discussed herewith are the chemosensitizing properties of tocotrienols on various cancer cell types when combined with various drugs and biological molecules.

9.
Semin Cancer Biol ; 80: 306-339, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32610149

RESUMEN

Despite significant advancements made in the treatment of cancer during the past several decades, it remains one of the leading causes of death worldwide killing approximately 9.6 million people annually. The major challenge for therapeutic success is the development of chemoresistance in cancer cells against conventional chemotherapeutic agents via modulation of numerous survival and oncogenic signaling pathways. Therefore, sensitization of cancer cells to conventional drugs using multitargeted agents that suppress the survival and oncogenic pathways, in single or in combination, is an emerging strategy to overcome drug-resistance. During the last couple of decades, phytochemicals such as curcumin, resveratrol, tocotrienol and quercetin have emerged as potential chemosensitizing agents in cancer cells due to their less toxic and multitargeted properties. Numerous preclinical and clinical studies enumerated their potential to prevent drug resistance and sensitize cancer cells to chemotherapeutic agents by modulating several genes/proteins or pathways that regulate the key factors during the growth and progression of tumors such as inhibition of anti-apoptotic proteins, activation of pro-apoptotic proteins, reduced expression of different transcription factors, chemokines, enzymes, cell adhesion molecules, protein tyrosine kinases and cell cycle regulators. Therefore, natural chemosensitizing agents will have a special place in cancer treatment in the near future. This comprehensive review summarizes data obtained from various in vitro, in vivo and clinical studies to provide a new perspective for the application of agents obtained from "Mother Nature" as potential chemosensitizers for further cancer drug research and development.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Transducción de Señal
10.
IUBMB Life ; 75(6): 514-529, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36300671

RESUMEN

Numerous recent studies suggest that cancer-specific splicing alteration is a critical contributor to the pathogenesis of cancer. RNA-binding protein with serine-rich domain 1, RNPS1, is an essential regulator of the splicing process. However, the defined role of RNPS1 in tumorigenesis still remains elusive. We report here that the expression of RNPS1 is higher in cervical carcinoma samples from The Cancer Genome Atlas (TCGA-cervical squamous cell carcinoma and endocervical adenocarcinoma) compared to the normal tissues. Consistently, the expression of RNPS1 was high in cervical cancer cells compared to a normal cell line. This study shows for the first time that RNPS1 promotes cell proliferation and colony-forming ability of cervical cancer cells. Importantly, RNPS1 positively regulates migration-invasion of cervical cancer cells. Intriguingly, depletion of RNPS1 increases the chemosensitivity against the chemotherapeutic drug doxorubicin in cervical cancer cells. Further, we characterized the genome-wide isoform switching stimulated by RNPS1 in cervical cancer cell. Mechanistically, RNA-sequencing analysis showed that RNPS1 regulates the generation of tumor-associated isoforms of key genes, particularly Rac1b, RhoA, MDM4, and WDR1, through alternative splicing. RNPS1 regulates the splicing of Rac1 pre-mRNA via a specific alternative splicing switch and promotes the formation of its tumorigenic splice variant, Rac1b. While the transcriptional regulation of RhoA has been well studied, the role of alternative splicing in RhoA upregulation in cancer cells is largely unknown. Here, we have shown that the knockdown of RNPS1 in cervical cancer cells leads to the skipping of exons encoding the RAS domain of RhoA, consequently causing decreased expression of RhoA. Collectively, we conclude that the gain of RNPS1 expression may be associated with tumor progression in cervical carcinoma. RNPS1-mediated alternative splicing favors an active Rac1b/RhoA signaling axis that could contribute to cervical cancer cell invasion and metastasis. Thus, our work unveils a novel role of RNPS1 in the development of cervical cancer.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Empalme de ARN , Ribonucleoproteínas , Neoplasias del Cuello Uterino , Femenino , Humanos , Empalme Alternativo , Carcinogénesis , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas , Factores de Empalme de ARN/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Ribonucleoproteínas/metabolismo
11.
Cancer Invest ; 41(2): 183-220, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35993769

RESUMEN

With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.


Asunto(s)
Antiinflamatorios , Antioxidantes , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Granjas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación
12.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902421

RESUMEN

Frequent development of resistance to chemotherapeutic agents such as 5-flourouracil (5-FU) complicates the treatment of advanced colorectal cancer (CRC). Resveratrol is able to utilize ß1-integrin receptors, strongly expressed in CRC cells, to transmit and exert anti-carcinogenic signals, but whether it can also utilize these receptors to overcome 5-FU chemoresistance in CRC cells has not yet been investigated. Effects of ß1-integrin knockdown on anti-cancer capabilities of resveratrol and 5-FU were investigated in HCT-116 and 5-FU-resistant HCT-116R CRC tumor microenvironment (TME) with 3D-alginate as well as monolayer cultures. Resveratrol increased CRC cell sensitivity to 5-FU by reducing TME-promoted vitality, proliferation, colony formation, invasion tendency and mesenchymal phenotype including pro-migration pseudopodia. Furthermore, resveratrol impaired CRC cells in favor of more effective utilization of 5-FU by down-regulating TME-induced inflammation (NF-kB), vascularisation (VEGF, HIF-1α) and cancer stem cell production (CD44, CD133, ALDH1), while up-regulating apoptosis (caspase-3) that was previously inhibited by TME. These anti-cancer mechanisms of resveratrol were largely abolished by antisense oligonucleotides against ß1-integrin (ß1-ASO) in both CRC cell lines, indicating the particular importance of ß1-integrin receptors for the 5-FU-chemosensitising effect of resveratrol. Lastly, co-immunoprecipitation tests showed that resveratrol targets and modulates the TME-associated ß1-integrin/HIF-1α signaling axis in CRC cells. Our results suggest for the first time the utility of the ß1-integrin/HIF-1α signaling axis related to chemosensitization and overcoming chemoresistance to 5-FU in CRC cells by resveratrol, underlining its potential supportive applications in CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Humanos , Resveratrol/farmacología , Integrina beta1/metabolismo , Neoplasias Colorrectales/patología , Fluorouracilo/farmacología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos
13.
Pharmacol Res ; 179: 106202, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378275

RESUMEN

Chronic diseases are considered a major public health concern worldwide, and most of these diseases like cancer, cardiovascular, metabolic, and neurological disorders occur due to atypical regulation of multiple signaling pathways. It has also been observed that most of the currently approved therapies for these diseases fail to show prolonged efficacy due to their mono-targeted nature and are associated with the development of chemoresistance, thus restricting their utility. The plant-derived compounds, on the other hand, show multi-targeted nature, and thus these phytochemicals have gained wide attention as they offer negligible side effects. The present review aims to recapitulate the potential effects of one such phytochemical, Scopoletin, which was found to have a diverse range of pharmacological activities such as anti-cancer, anti-diabetic, anti-inflammatory, cardioprotective, hepatoprotective, etc. Scopoletin modulated multiple molecular signatures in cancer, including AMPK, EGFR, MAPK/ ERK, NF-κB, PI3K/Akt/ mTOR, and STAT3; regulated the levels of critical markers of metabolic diseases such as ALT, AST, TG, and TC; inflammatory diseases such as ILs and TNFs; neurological diseases such as AChE, etc. thus relieving the symptoms and severity associated with these diseases. Further, this compound has a non-toxic nature and possesses an excellent pharmacokinetic property, which warrants further investigation in clinical settings for developing it as a potential drug.


Asunto(s)
Neoplasias , Escopoletina , Antiinflamatorios/uso terapéutico , Enfermedad Crónica , Humanos , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Fitoquímicos/farmacología , Escopoletina/farmacología , Escopoletina/uso terapéutico , Transducción de Señal
14.
J Biochem Mol Toxicol ; 36(2): e22950, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34842329

RESUMEN

Chronic diseases are a serious health concern worldwide, especially in the elderly population. Most chronic diseases like cancer, cardiovascular ailments, neurodegenerative disorders, and autoimmune diseases are caused due to the abnormal functioning of multiple signaling pathways that give rise to critical anomalies in the body. Although a lot of advanced therapies are available, these have failed to entirely cure the disease due to their less efficacy. Apart from this, they have been shown to manifest disturbing side effects which hamper the patient's quality of life to the extreme. Since the last few decades, extensive studies have been done on natural herbs due to their excellent medicinal benefits. Components present in natural herbs target multiple signaling pathways involved in diseases and therefore hold high potential in the prevention and treatment of various chronic diseases. Embelin, a benzoquinone, is one such agent isolated from Embelia ribes, which has shown excellent biological activities toward several chronic ailments by upregulating a number of antioxidant enzymes (e.g., SOD, CAT, GSH, etc.), inhibiting anti-apoptotic genes (e.g., TRAIL, XIAP, survivin, etc.), modulating transcription factors (e.g., NF-κB, STAT3, etc.) blocking inflammatory biomarkers (e.g., NO, IL-1ß, IL-6, TNF-α, etc.), monitoring cell cycle synchronizing genes (e.g., p53, cyclins, CDKs, etc.), and so forth. Several preclinical studies have confirmed its excellent therapeutic activities against malicious diseases like cancer, obesity, heart diseases, Alzheimer's, and so forth. This review presents an overview of embelin, its therapeutic prospective, and the molecular targets in different chronic diseases.


Asunto(s)
Benzoquinonas/uso terapéutico , Embelia/química , Cardiopatías/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores , Benzoquinonas/química , Enfermedad Crónica , Cardiopatías/metabolismo , Humanos , Neoplasias/metabolismo , Obesidad/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
15.
J Biochem Mol Toxicol ; 36(12): e23206, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36124371

RESUMEN

Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.


Asunto(s)
Antineoplásicos , Triterpenos , Animales , Humanos , Ácido Betulínico , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triterpenos/química
16.
Phytother Res ; 36(5): 1854-1883, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35102626

RESUMEN

The medicinal plant Scutellaria baicalensis, commonly known as Chinese skullcap or Huang-Qin, has been used as a traditional medicine for several thousand years. The roots of this plant contain bioactive compounds, such as wogonin (WOG), wogonoside, baicalein, and baicalin. The aim of this article is to evaluate the therapeutic potential and mechanisms of action of WOG against different cancers. Numerous in vitro and in vivo studies have revealed that WOG exerts immense therapeutic potential against bladder cancer, breast cancer, cholangiocarcinoma, cervical cancer, colorectal cancer, gallbladder cancer, gastric cancer, glioblastoma, head and neck cancer, hepatic cancer, leukemia, lung cancer, lymphoma, melanoma, multiple myeloma, neuroblastoma, osteosarcoma, ovarian cancer, pancreatic cancer, prostate cancer, and renal cancer by regulating various cell signaling pathways. WOG, in combination with established chemotherapeutic drugs, improves the efficacy of treatment and lowers toxicity. Nevertheless, human trials are warranted to validate these findings. Numerous preclinical studies, combined with an extensive margin of safety and no severe side effects, underscore WOG's therapeutic potential as an anticancer drug. These studies propound the use of WOG as a potential anticancer candidate; however, further high-quality studies are required to firmly establish the clinical efficacy of WOG for the prevention and treatment of human malignancies.


Asunto(s)
Medicamentos Herbarios Chinos , Flavanonas , Neoplasias , Scutellaria , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonoides , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Extractos Vegetales/farmacología , Scutellaria baicalensis
17.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35163616

RESUMEN

Calebin A (CA) is one of the active constituents of turmeric and has anti-inflammatory and antioxidant effects. Excessive inflammation and cell apoptosis are the main causes of tendinitis and tendinopathies. However, the role of CA in tendinitis is still unclear and needs to be studied in detail. Tenocytes in monolayer or 3D-alginate cultures in the multicellular tendinitis microenvironment (fibroblast cells) with T-lymphocytes (TN-ME) or with TNF-α or TNF-ß, were kept without treatment or treated with CA to study their range of actions in inflammation. We determined that CA blocked TNF-ß-, similar to TNF-α-induced adhesiveness of T-lymphocytes to tenocytes. Moreover, immunofluorescence and immunoblotting showed that CA, similar to BMS-345541 (specific IKK-inhibitor), suppressed T-lymphocytes, or the TNF-α- or TNF-ß-induced down-regulation of Collagen I, Tenomodulin, tenocyte-specific transcription factor (Scleraxis) and the up-regulation of NF-κB phosphorylation; thus, its translocation to the nucleus as well as various NF-κB-regulated proteins was implicated in inflammatory and degradative processes. Furthermore, CA significantly suppressed T-lymphocyte-induced signaling, similar to TNF-ß-induced signaling, and NF-κB activation by inhibiting the phosphorylation and degradation of IκBα (an NF-κB inhibitor) and IκB-kinase activity. Finally, inflammatory TN-ME induced the functional linkage between NF-κB and Scleraxis, proposing that a synergistic interaction between the two transcription factors is required for the initiation of tendinitis, whereas CA strongly attenuated this linkage and subsequent inflammation. For the first time, we suggest that CA modulates TN-ME-promoted inflammation in tenocytes, at least in part, via NF-κB/Scleraxis signaling. Thus, CA seems to be a potential bioactive compound for the prevention and treatment of tendinitis.


Asunto(s)
Cinamatos/farmacología , Inflamación , Monoterpenos/farmacología , FN-kappa B/metabolismo , Tendinopatía/tratamiento farmacológico , Tenocitos/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cinamatos/uso terapéutico , Curcumina/química , Humanos , Células Jurkat , Monoterpenos/uso terapéutico , Transducción de Señal , Tendinopatía/metabolismo , Tenocitos/metabolismo
18.
Int J Mol Sci ; 23(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36293239

RESUMEN

Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitinación , Neoplasias/patología , Carcinogénesis , Ubiquitinas/metabolismo
19.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36142861

RESUMEN

Esophageal cancer (EC), an aggressive and poorly understood disease, is one of the top causes of cancer-related fatalities. GLOBOCAN 2020 reports that there are 544,076 deaths and 604,100 new cases expected worldwide. Even though there are various advancements in treatment procedures, this cancer has been reported as one of the most difficult cancers to cure, and to increase patient survival; treatment targets still need to be established. Nuclear receptors (NRs) are a type of transcription factor, which has a key role in several biological processes such as reproduction, development, cellular differentiation, stress response, immunity, metabolism, lipids, and drugs, and are essential regulators of several diseases, including cancer. Numerous studies have demonstrated the importance of NRs in tumor immunology and proved the well-known roles of multiple NRs in modulating proliferation, differentiation, and apoptosis. There are surplus of studies conducted on NRs and their implications in EC, but only a few studies have demonstrated the diagnostic and prognostic potential of NRs. Therefore, there is still a paucity of the role of NRs and different ways to target them in EC cells to stop them from spreading malignancy. This review emphasizes the significance of NRs in EC by discussing their diverse agonists as well as antagonists and their response to tumor progression. Additionally, we emphasize NRs' potential to serve as a novel therapeutic target and their capacity to treat and prevent EC.


Asunto(s)
Neoplasias Esofágicas , Receptores Citoplasmáticos y Nucleares , Diferenciación Celular , Humanos , Lípidos , Factores de Transcripción
20.
J Cell Physiol ; 236(12): 7938-7965, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34105151

RESUMEN

In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.


Asunto(s)
Carcinogénesis/genética , Recurrencia Local de Neoplasia/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA