Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 447(2): 137-146, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30664880

RESUMEN

Neural crest cells have broad migratory and differentiative ability that differs according to their axial level of origin. However, their transient nature has limited understanding of their stem cell and self-renewal properties. While an in vitro culture method has made it possible to maintain cranial neural crest cells as self-renewing multipotent crestospheres (Kerosuo et al., 2015), these same conditions failed to preserve trunk neural crest in a stem-like state. Here we optimize culture conditions for maintenance of avian trunk crestospheres, comprised of both neural crest stem and progenitor cells. Our trunk-derived crestospheres are multipotent and display self-renewal capacity over several weeks. Trunk crestospheres display elevated expression of neural crest cell markers as compared to those characteristic of ventrolateral neural tube or mesodermal fates. Moreover, trunk crestospheres express increased levels of trunk neural crest-enriched markers as compared to cranial crestospheres. Finally, we use lentiviral transduction as a tool to manipulate gene expression in trunk crestospheres. Taken together, this method enables long-term in vitro maintenance and manipulation of multipotent trunk neural crest cells in a premigratory stem or early progenitor state. Trunk crestospheres are a valuable resource for probing mechanisms underlying neural crest stemness and lineage decisions as well as accompanying diseases.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Multipotentes/metabolismo , Cresta Neural/embriología , Células-Madre Neurales/metabolismo , Animales , Embrión de Pollo , Pollos , Células Madre Multipotentes/citología , Cresta Neural/citología , Células-Madre Neurales/citología
2.
Dev Biol ; 444 Suppl 1: S98-S109, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29981692

RESUMEN

Arising within the neural tube between the cranial and trunk regions of the body axis, the vagal neural crest shares interesting similarities in its migratory routes and derivatives with other neural crest populations. However, the vagal neural crest is also unique in its ability to contribute to diverse organs including the heart and enteric nervous system. This review highlights the migratory routes of the vagal neural crest and compares them across multiple vertebrates. We also summarize recent advances in understanding vagal neural crest ontogeny and discuss the contribution of this important neural crest population to the cardiovascular system and endoderm-derived organs, including the thymus, lungs and pancreas.


Asunto(s)
Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/fisiología , Cresta Neural/metabolismo , Animales , Evolución Biológica , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Ganglios , Corazón/embriología , Humanos , Pulmón/embriología , Cresta Neural/embriología , Cresta Neural/fisiología , Tubo Neural , Neurogénesis , Páncreas/embriología , Timo/embriología , Torso , Vertebrados/embriología
3.
Cytoskeleton (Hoboken) ; 75(7): 323-335, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30019417

RESUMEN

The actin cortex that lines the plasma membrane of most eukaryotic cells resists external mechanical forces and plays critical roles in a variety of cellular processes including morphogenesis, cytokinesis, and cell migration. Despite its ubiquity and significance, we understand relatively little about the composition, dynamics, and structure of the actin cortex. Adenomatous polyposis coli (APC) proteins regulate the actin and microtubule cytoskeletons through a variety of mechanisms, and in some contexts, APC proteins are cortically enriched. Here we show that APC2 regulates cortical actin dynamics in the follicular epithelium and the nurse cells of the Drosophila ovary and in addition affects the distribution of cortical actin at the apical side of the follicular epithelium. To understand how APC2 influences these properties of the actin cortex, we investigated the mechanisms controlling the cortical localization of APC2 in S2 cultured cells. We previously showed that the N-terminal half of APC2 containing the Armadillo repeats and the C-terminal 30 amino acids (C30) are together necessary and sufficient for APC2's cortical localization. Our work presented here supports a model that cortical localization of APC2 is governed in part by self-association through the N-terminal APC Self-Association Domain (ASAD) and a highly conserved coiled-coil within the C30 domain.


Asunto(s)
Actinas/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas de Drosophila/metabolismo , Ovario/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila , Femenino , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA