Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Biol ; 15(6): e2001414, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28662064

RESUMEN

In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.


Asunto(s)
Disciplinas de las Ciencias Biológicas/métodos , Biología Computacional/métodos , Minería de Datos/métodos , Diseño de Software , Programas Informáticos , Disciplinas de las Ciencias Biológicas/estadística & datos numéricos , Disciplinas de las Ciencias Biológicas/tendencias , Biología Computacional/tendencias , Minería de Datos/estadística & datos numéricos , Minería de Datos/tendencias , Bases de Datos Factuales/estadística & datos numéricos , Bases de Datos Factuales/tendencias , Predicción , Humanos , Internet
2.
Sci Data ; 9(1): 714, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402838

RESUMEN

The standardized identification of biomedical entities is a cornerstone of interoperability, reuse, and data integration in the life sciences. Several registries have been developed to catalog resources maintaining identifiers for biomedical entities such as small molecules, proteins, cell lines, and clinical trials. However, existing registries have struggled to provide sufficient coverage and metadata standards that meet the evolving needs of modern life sciences researchers. Here, we introduce the Bioregistry, an integrative, open, community-driven metaregistry that synthesizes and substantially expands upon 23 existing registries. The Bioregistry addresses the need for a sustainable registry by leveraging public infrastructure and automation, and employing a progressive governance model centered around open code and open data to foster community contribution. The Bioregistry can be used to support the standardized annotation of data, models, ontologies, and scientific literature, thereby promoting their interoperability and reuse. The Bioregistry can be accessed through https://bioregistry.io and its source code and data are available under the MIT and CC0 Licenses at https://github.com/biopragmatics/bioregistry .

3.
Gigascience ; 10(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33960385

RESUMEN

Sampling the natural world and built environment underpins much of science, yet systems for managing material samples and associated (meta)data are fragmented across institutional catalogs, practices for identification, and discipline-specific (meta)data standards. The Internet of Samples (iSamples) is a standards-based collaboration to uniquely, consistently, and conveniently identify material samples, record core metadata about them, and link them to other samples, data, and research products. iSamples extends existing resources and best practices in data stewardship to render a cross-domain cyberinfrastructure that enables transdisciplinary research, discovery, and reuse of material samples in 21st century natural science.


Asunto(s)
Internet , Metadatos
4.
Sci Data ; 5: 180029, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29737976

RESUMEN

Most biomedical data repositories issue locally-unique accessions numbers, but do not provide globally unique, machine-resolvable, persistent identifiers for their datasets, as required by publishers wishing to implement data citation in accordance with widely accepted principles. Local accessions may however be prefixed with a namespace identifier, providing global uniqueness. Such "compact identifiers" have been widely used in biomedical informatics to support global resource identification with local identifier assignment. We report here on our project to provide robust support for machine-resolvable, persistent compact identifiers in biomedical data citation, by harmonizing the Identifiers.org and N2T.net (Name-To-Thing) meta-resolvers and extending their capabilities. Identifiers.org services hosted at the European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), and N2T.net services hosted at the California Digital Library (CDL), can now resolve any given identifier from over 600 source databases to its original source on the Web, using a common registry of prefix-based redirection rules. We believe these services will be of significant help to publishers and others implementing persistent, machine-resolvable citation of research data.

5.
Zookeys ; (494): 133-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901117

RESUMEN

Biodiversity data is being digitized and made available online at a rapidly increasing rate but current practices typically do not preserve linkages between these data, which impedes interoperation, provenance tracking, and assembly of larger datasets. For data associated with biocollections, the biodiversity community has long recognized that an essential part of establishing and preserving linkages is to apply globally unique identifiers at the point when data are generated in the field and to persist these identifiers downstream, but this is seldom implemented in practice. There has neither been coalescence towards one single identifier solution (as in some other domains), nor even a set of recommended best practices and standards to support multiple identifier schemes sharing consistent responses. In order to further progress towards a broader community consensus, a group of biocollections and informatics experts assembled in Stockholm in October 2014 to discuss community next steps to overcome current roadblocks. The workshop participants divided into four groups focusing on: identifier practice in current field biocollections; identifier application for legacy biocollections; identifiers as applied to biodiversity data records as they are published and made available in semantically marked-up publications; and cross-cutting identifier solutions that bridge across these domains. The main outcome was consensus on key issues, including recognition of differences between legacy and new biocollections processes, the need for identifier metadata profiles that can report information on identifier persistence missions, and the unambiguous indication of the type of object associated with the identifier. Current identifier characteristics are also summarized, and an overview of available schemes and practices is provided.

6.
F1000Res ; 3: 6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25653834

RESUMEN

Scientific datasets have immeasurable value, but they lose their value over time without proper documentation, long-term storage, and easy discovery and access. Across disciplines as diverse as astronomy, demography, archeology, and ecology, large numbers of small heterogeneous datasets (i.e., the long tail of data) are especially at risk unless they are properly documented, saved, and shared. One unifying factor for many of these at-risk datasets is that they reside in spreadsheets. In response to this need, the California Digital Library (CDL) partnered with Microsoft Research Connections and the Gordon and Betty Moore Foundation to create the DataUp data management tool for Microsoft Excel. Many researchers creating these small, heterogeneous datasets use Excel at some point in their data collection and analysis workflow, so we were interested in developing a data management tool that fits easily into those work flows and minimizes the learning curve for researchers. The DataUp project began in August 2011. We first formally assessed the needs of researchers by conducting surveys and interviews of our target research groups: earth, environmental, and ecological scientists. We found that, on average, researchers had very poor data management practices, were not aware of data centers or metadata standards, and did not understand the benefits of data management or sharing. Based on our survey results, we composed a list of desirable components and requirements and solicited feedback from the community to prioritize potential features of the DataUp tool. These requirements were then relayed to the software developers, and DataUp was successfully launched in October 2012.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA