Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123836

RESUMEN

This study presents a portable, low-cost, point-of-care (POC) system for the simultaneous detection of blood glucose and hematocrit. The system consists of a disposable origami microfluidic paper-based analytical device (µPAD) for plasma separation, filtration, and reaction functions and a 3D-printed cassette for hematocrit and blood glucose detection using a smartphone. The origami µPAD is patterned using a cost-effective label printing technique instead of the conventional wax printing method. The 3D-printed cassette incorporates an array of LED lights, which mitigates the effects of intensity variations in the ambient light and hence improves the accuracy of the blood glucose and hematocrit concentration measurements. The hematocrit concentration is determined quantitatively by measuring the distance of plasma wicking along the upper layer of the origami µPAD, which is pretreated with sodium chloride and Tween 20 to induce dehydration and aggregation of the red blood cells. The filtered plasma also penetrates to the lower layer of the origami µPAD, where it reacts with embedded colorimetric assay reagents to produce a yellowish-brown complex. A color image of the reaction complex is captured using a smartphone inserted into the 3D-printed cassette. The image is analyzed using self-written RGB software to quantify the blood glucose concentration. The calibration results indicate that the proposed detection platform provides an accurate assessment of the blood glucose level over the range of 45-630 mg/dL (R2 = 0.9958). The practical feasibility of the proposed platform is demonstrated by measuring the blood glucose and hematocrit concentrations in 13 human whole blood samples. Taking the measurements obtained from commercial glucose and hematocrit meters as a benchmark, the proposed system has a differential of no more than 6.4% for blood glucose detection and 9.1% for hematocrit detection. Overall, the results confirm that the proposed µPAD is a promising solution for cost-effective and reliable POC health monitoring.


Asunto(s)
Glucemia , Papel , Sistemas de Atención de Punto , Impresión Tridimensional , Teléfono Inteligente , Hematócrito , Humanos , Glucemia/análisis , Colorimetría/instrumentación , Colorimetría/métodos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
2.
Biomed Microdevices ; 16(4): 549-58, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24647859

RESUMEN

Traditional clinical methods for separating whole blood into blood cells and cell-free plasma are labor intensive and time consuming. Accordingly, the present study proposes a simple compact disk (CD) microfluidic platform for the rapid separation of plasma from whole human blood and the subsequent mixing of the plasma with a suitable reagent. The performance of three CD microfluidic platforms incorporating square-wave mixing channels with different widths is evaluated both numerically and experimentally. The results show that given an appropriate specification of the microchannel geometry and a CD rotation speed of 2000 rpm, a separation efficiency of 95 % can be achieved within 5 ~ 6 s given a diluted blood sample with a hematocrit concentration of 6 %. Moreover, a mixing efficiency of more than 96 % can be obtained within 5 s given a CD rotation speed of 2200 rpm. The practical feasibility of the proposed device is demonstrated by performing a prothrombin time (PT) test. It is shown that while the time required to perform the PT test using a conventional bench top system is around 15 min, the proposed CD microfluidic platform allows the test to be completed within 1 min.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Plasma/química , Diseño de Equipo , Estudios de Factibilidad , Hematócrito , Humanos , Masculino , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/instrumentación , Microfluídica/métodos
3.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512660

RESUMEN

We successfully developed a platform for the magnetic manipulation of droplets containing magnetic beads and examined the washing behaviors of the droplets, including droplet transportation, magnetic bead agitation inside droplets, and separation from parent droplets. Magnetic field gradients were produced with two layers of 6 × 1 planar coils fabricated by using printed circuit board technology. We performed theoretical analyses to understand the characteristics of the coils and successfully predicted the magnetic field and thermal temperature of a single coil. We then investigated experimentally the agitation and splitting kinetics of the magnetic beads inside droplets and experimentally observed the washing performance in different neck-shaped gaps. The performance of the washing process was evaluated by measuring both the particle loss ratio and the optical density. The findings of this work will be used to design a magnetic-actuated droplet platform, which will separate magnetic beads from their parent droplets and enhance washing performance. We hope that this study will provide digital microfluidics for application in point-of-care testing. The developed microchip will be of great benefit for genetic analysis and infectious disease detection in the future.

4.
Micromachines (Basel) ; 13(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36557544

RESUMEN

The rapid electrokinetic patterning (REP) technique has been demonstrated to enable dynamic particle manipulation in biomedical applications. Previous studies on REP have generally considered particles with a size less than 5 µm. In this study, a REP platform was used to manipulate polystyrene particles with a size of 3~11 µm in a microfluidic channel sandwiched between two ITO conductive glass plates. The effects of the synergy force produced by the REP electrothermal vortex on the particle motion were investigated numerically for fixed values of the laser power, AC driving voltage, and AC driving frequency, respectively. The simulation results showed that the particles were subject to a competition effect between the drag force produced by the toroidal vortex, which prompted the particles to recirculate in the bulk flow adjacent to the laser illumination spot on the lower electrode, and the trapping force produced by the particle and electrode interactions, which prompted the particles to aggregate in clusters on the surface of the illuminated spot. The experimental results showed that as the laser power increased, the toroidal flow range over which the particles circulated in the bulk flow increased, while the cluster range over which the particles were trapped on the electrode surface reduced. The results additionally showed that the particle velocity increased with an increasing laser power, particularly for particles with a smaller size. The excitation frequency at which the particles were trapped on the illuminated hot-spot reduced as the particle size increased. The force and velocity of polystyrene particles by the REP toroidal vortex has implications for further investigating the motion behavior at the biological cell level.

5.
Opt Express ; 14(15): 6844-50, 2006 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-19516866

RESUMEN

An integrated optical projection display technique utilizing three-color-mixing waveguides and grating-light-valve devices is demonstrated. This new projection display system comprises an optical lens, a microscanner, a grating light valve, and a 3x1 planar waveguide device. The planar waveguide device is fabricated using a SU-8 negative photoresist process, which is suitable material for rapid prototyping of integrated optical circuits. It works as a three-color-mixer and is successfully used for color image generation. The intensity of color for each pixel in the display picture is tuned by groups of movable ribbons comprising a grating light valve and image generating diffraction gratings. This study also demonstrates a surface-micromachined optical scanner using four stress-actuated polysilicon plates to raise a horizontal mirror. The electrostatically driven mirror can be used for scanning projection display applications. Experimental data show that the optical scanner has a mirror scanning angle up to +/-15(o) using an operating voltage of 25 V. A sub-millisecond switching time (<900 mus) and an optical insertion loss of 0.85 dB is achieved for multi-mode waveguides. The development of the proposed integrated optical system could be promising for an image generation system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA