Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 30(24): 2429-2440, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34274970

RESUMEN

Many hereditary cancer syndromes are associated with an increased risk of small and large intestinal adenocarcinomas. However, conditions bearing a high risk to both adenocarcinomas and neuroendocrine tumors are yet to be described. We studied a family with 16 individuals in four generations affected by a wide spectrum of intestinal tumors, including hyperplastic polyps, adenomas, small intestinal neuroendocrine tumors, and colorectal and small intestinal adenocarcinomas. To assess the genetic susceptibility and understand the novel phenotype, we utilized multiple molecular methods, including whole genome sequencing, RNA sequencing, single cell sequencing, RNA in situ hybridization and organoid culture. We detected a heterozygous deletion at the cystic fibrosis locus (7q31.2) perfectly segregating with the intestinal tumor predisposition in the family. The deletion removes a topologically associating domain border between CFTR and WNT2, aberrantly activating WNT2 in the intestinal epithelium. These consequences suggest that the deletion predisposes to small intestinal neuroendocrine tumors and small and large intestinal adenocarcinomas, and reveals the broad tumorigenic effects of aberrant WNT activation in the human intestine.


Asunto(s)
Adenocarcinoma , Adenoma , Neoplasias Colorrectales , Tumores Neuroendocrinos , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenoma/genética , Adenoma/patología , Neoplasias Colorrectales/genética , Humanos , Mucosa Intestinal/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Proteína wnt2
2.
J Med Genet ; 59(7): 644-651, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34281993

RESUMEN

BACKGROUND: Genes involved in epigenetic regulation are central for chromatin structure and gene expression. Specific mutations in these might promote carcinogenesis in several tissue types. METHODS: We used exome, whole-genome and Sanger sequencing to detect rare variants shared by seven affected individuals in a striking early-onset multi-cancer family. The only variant that segregated with malignancy resided in a histone demethylase KDM4C. Consequently, we went on to study the epigenetic landscape of the mutation carriers with ATAC, ChIP (chromatin immunoprecipitation) and RNA-sequencing from lymphoblastoid cell lines to identify possible pathogenic effects. RESULTS: A novel variant in KDM4C, encoding a H3K9me3 histone demethylase and transcription regulator, was found to segregate with malignancy in the family. Based on Roadmap Epigenomics Project data, differentially accessible chromatin regions between the variant carriers and controls enrich to normally H3K9me3-marked chromatin. We could not detect a difference in global H3K9 trimethylation levels. However, carriers of the variant seemed to have more trimethylated H3K9 at transcription start sites. Pathway analyses of ChIP-seq and differential gene expression data suggested that genes regulated through KDM4C interaction partner EZH2 and its interaction partner PLZF are aberrantly expressed in mutation carriers. CONCLUSIONS: The apparent dysregulation of H3K9 trimethylation and KDM4C-associated genes in lymphoblastoid cells supports the hypothesis that the KDM4C variant is causative of the multi-cancer susceptibility in the family. As the variant is ultrarare, located in the conserved catalytic JmjC domain and predicted pathogenic by the majority of available in silico tools, further studies on the role of KDM4C in cancer predisposition are warranted.


Asunto(s)
Histona Demetilasas , Histona Demetilasas con Dominio de Jumonji , Neoplasias , Cromatina/genética , Epigénesis Genética , Células Germinativas/metabolismo , Células Germinativas/patología , Histona Demetilasas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neoplasias/genética , Fenotipo
3.
Gastroenterology ; 161(2): 592-607, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930428

RESUMEN

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. METHODS: Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue samples of tumor and corresponding normal tissues from 31 patients with IBD-CRC. RESULTS: Transcriptome-based tumor subtyping revealed the complete absence of canonical epithelial tumor subtype associated with WNT signaling in IBD-CRCs, dominated instead by mesenchymal stroma-rich subtype. Negative WNT regulators AXIN2 and RNF43 were strongly down-regulated in IBD-CRCs and chromosomal gains at HNF4A, a negative regulator of WNT-induced epithelial-mesenchymal transition (EMT), were less frequent compared to sCRCs. Enrichment of hypomethylation at HNF4α binding sites was detected solely in sCRC genomes. PIGR and OSMR involved in mucosal immunity were dysregulated via epigenetic modifications in IBD-CRCs. Genome-wide analysis showed significant enrichment of noncoding mutations to 5'untranslated region of TP53 in IBD-CRCs. As reported previously, somatic mutations in APC and KRAS were less frequent in IBD-CRCs compared to sCRCs. CONCLUSIONS: Distinct mechanisms of WNT pathway dysregulation skew IBD-CRCs toward mesenchymal tumor subtype, which may affect prognosis and treatment options. Increased OSMR signaling may favor the establishment of mesenchymal tumors in patients with IBD.


Asunto(s)
Biomarcadores de Tumor/genética , Transformación Celular Neoplásica/genética , Neoplasias Asociadas a Colitis/genética , Metilación de ADN , Epigénesis Genética , Enfermedades Inflamatorias del Intestino/genética , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Neoplasias Asociadas a Colitis/inmunología , Neoplasias Asociadas a Colitis/patología , Análisis Mutacional de ADN , Epigenómica , Femenino , Finlandia , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Secuenciación Completa del Genoma
4.
Vascular ; 30(5): 842-847, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34281442

RESUMEN

BACKGROUND: Visceral artery aneurysms (VAAs) can be fatal if ruptured. Although a relatively rare incident, it holds a contemporary mortality rate of approximately 12%. VAAs have multiple possible causes, one of which is genetic predisposition. Here, we present a striking family with seven individuals affected by VAAs, and one individual affected by a visceral artery pseudoaneurysm. METHODS: We exome sequenced the affected family members and the parents of the proband to find a possible underlying genetic defect. As exome sequencing did not reveal any feasible protein-coding variants, we combined whole-genome sequencing of two individuals with linkage analysis to find a plausible non-coding culprit variant. Variants were ranked by the deep learning framework DeepSEA. RESULTS: Two of seven top-ranking variants, NC_000013.11:g.108154659C>T and NC_000013.11:g.110409638C>T, were found in all VAA-affected individuals, but not in the individual affected by the pseudoaneurysm. The second variant is in a candidate cis-regulatory element in the fourth intron of COL4A2, proximal to COL4A1. CONCLUSIONS: As type IV collagens are essential for the stability and integrity of the vascular basement membrane and involved in vascular disease, we conclude that COL4A1 and COL4A2 are strong candidates for VAA susceptibility genes.


Asunto(s)
Aneurisma Falso , Aneurisma , Colágeno Tipo IV , Aneurisma/etiología , Arterias , Colágeno Tipo IV/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linaje
5.
Brief Bioinform ; 19(3): 404-414, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069635

RESUMEN

Transcript prediction can be modeled as a graph problem where exons are modeled as nodes and reads spanning two or more exons are modeled as exon chains. Pacific Biosciences third-generation sequencing technology produces significantly longer reads than earlier second-generation sequencing technologies, which gives valuable information about longer exon chains in a graph. However, with the high error rates of third-generation sequencing, aligning long reads correctly around the splice sites is a challenging task. Incorrect alignments lead to spurious nodes and arcs in the graph, which in turn lead to incorrect transcript predictions. We survey several approaches to find the exon chains corresponding to long reads in a splicing graph, and experimentally study the performance of these methods using simulated data to allow for sensitivity/precision analysis. Our experiments show that short reads from second-generation sequencing can be used to significantly improve exon chain correctness either by error-correcting the long reads before splicing graph creation, or by using them to create a splicing graph on which the long-read alignments are then projected. We also study the memory and time consumption of various modules, and show that accurate exon chains lead to significantly increased transcript prediction accuracy. AVAILABILITY: The simulated data and in-house scripts used for this article are available at http://www.cs.helsinki.fi/group/gsa/exon-chains/exon-chains-bib.tar.bz2.


Asunto(s)
Cromosomas Humanos Par 2 , Biología Computacional/métodos , Exones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Empalme del ARN , Análisis de Secuencia de ADN/métodos , Perfilación de la Expresión Génica , Humanos
6.
N Engl J Med ; 369(1): 43-53, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23738515

RESUMEN

BACKGROUND: Uterine leiomyomas are benign but affect the health of millions of women. A better understanding of the molecular mechanisms involved may provide clues to the prevention and treatment of these lesions. METHODS: We performed whole-genome sequencing and gene-expression profiling of 38 uterine leiomyomas and the corresponding myometrium from 30 women. RESULTS: Identical variants observed in some separate tumor nodules suggested that these nodules have a common origin. Complex chromosomal rearrangements resembling chromothripsis were a common feature of leiomyomas. These rearrangements are best explained by a single event of multiple chromosomal breaks and random reassembly. The rearrangements created tissue-specific changes consistent with a role in the initiation of leiomyoma, such as translocations of the HMGA2 and RAD51B loci and aberrations at the COL4A5-COL4A6 locus, and occurred in the presence of normal TP53 alleles. In some cases, separate events had occurred more than once in single tumor-cell lineages. CONCLUSIONS: Chromosome shattering and reassembly resembling chromothripsis (a single genomic event that results in focal losses and rearrangements in multiple genomic regions) is a major cause of chromosomal abnormalities in uterine leiomyomas; we propose that tumorigenesis occurs when tissue-specific tumor-promoting changes are formed through these events. Chromothripsis has previously been associated with aggressive cancer; its common occurrence in leiomyomas suggests that it also has a role in the genesis and progression of benign tumors. We observed that multiple separate tumors could be seeded from a single lineage of uterine leiomyoma cells. (Funded by the Academy of Finland Center of Excellence program and others.).


Asunto(s)
Aberraciones Cromosómicas , Fumarato Hidratasa/deficiencia , Leiomioma/genética , Complejo Mediador/genética , Neoplasias Uterinas/genética , Rotura Cromosómica , Deleción Cromosómica , Colágeno Tipo IV/genética , Femenino , Fumarato Hidratasa/genética , Perfilación de la Expresión Génica , Reordenamiento Génico , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Miometrio/química , Regulación hacia Arriba
7.
BMC Bioinformatics ; 14 Suppl 5: S15, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23734627

RESUMEN

BACKGROUND: Through transcription and alternative splicing, a gene can be transcribed into different RNA sequences (isoforms), depending on the individual, on the tissue the cell is in, or in response to some stimuli. Recent RNA-Seq technology allows for new high-throughput ways for isoform identification and quantification based on short reads, and various methods have been put forward for this non-trivial problem. RESULTS: In this paper we propose a novel radically different method based on minimum-cost network flows. This has a two-fold advantage: on the one hand, it translates the problem as an established one in the field of network flows, which can be solved in polynomial time, with different existing solvers; on the other hand, it is general enough to encompass many of the previous proposals under the least sum of squares model. Our method works as follows: in order to find the transcripts which best explain, under a given fitness model, a splicing graph resulting from an RNA-Seq experiment, we find a min-cost flow in an offset flow network, under an equivalent cost model. Under very weak assumptions on the fitness model, the optimal flow can be computed in polynomial time. Parsimoniously splitting the flow back into few path transcripts can be done with any of the heuristics and approximations available from the theory of network flows. In the present implementation, we choose the simple strategy of repeatedly removing the heaviest path. CONCLUSIONS: We proposed a new very general method based on network flows for a multiassembly problem arising from isoform identification and quantification with RNA-Seq. Experimental results on prediction accuracy show that our method is very competitive with popular tools such as Cufflinks and IsoLasso. Our tool, called Traph (Transcrips in gRAPHs), is available at: http://www.cs.helsinki.fi/gsa/traph/.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Isoformas de ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Algoritmos , Empalme Alternativo , Humanos , Modelos Estadísticos , Programas Informáticos
8.
Clin Epigenetics ; 15(1): 7, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36639817

RESUMEN

BACKGROUND: Accurate regulation of DNA methylation is necessary for normal cells to differentiate, develop and function. TET2 catalyzes stepwise DNA demethylation in hematopoietic cells. Mutations in the TET2 gene predispose to hematological malignancies by causing DNA methylation overload and aberrant epigenomic landscape. Studies on mice and cell lines show that the function of TET2 is boosted by vitamin C. Thus, by strengthening the demethylation activity of TET2, vitamin C could play a role in the prevention of hematological malignancies in individuals with TET2 dysfunction. We recently identified a family with lymphoma predisposition where a heterozygous truncating germline mutation in TET2 segregated with nodular lymphocyte-predominant Hodgkin lymphoma. The mutation carriers displayed a hypermethylation pattern that was absent in the family members without the mutation. METHODS: In a clinical trial of 1 year, we investigated the effects of oral 1 g/day vitamin C supplementation on DNA methylation by analyzing genome-wide DNA methylation and gene expression patterns from the family members. RESULTS: We show that vitamin C reinforces the DNA demethylation cascade, reduces the proportion of hypermethylated loci and diminishes gene expression differences between TET2 mutation carriers and control individuals. CONCLUSIONS: These results suggest that vitamin C supplementation increases DNA methylation turnover and provide a basis for further work to examine the potential benefits of vitamin C supplementation in individuals with germline and somatic TET2 mutations. TRIAL REGISTRATION: This trial was registered at EudraCT with reference number of 2018-000155-41 (01.04.2019).


Asunto(s)
Ácido Ascórbico , Proteínas de Unión al ADN , Dioxigenasas , Neoplasias Hematológicas , Ácido Ascórbico/uso terapéutico , Dioxigenasas/genética , Desmetilación del ADN , Metilación de ADN , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Neoplasias Hematológicas/genética , Mutación , Vitaminas/uso terapéutico , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-26671806

RESUMEN

RNA-Seq technology offers new high-throughput ways for transcript identification and quantification based on short reads, and has recently attracted great interest. This is achieved by constructing a weighted DAG whose vertices stand for exons, and whose arcs stand for split alignments of the RNA-Seq reads to the exons. The task consists of finding a number of paths, together with their expression levels, which optimally explain the weights of the graph under various fitting functions, such as least sum of squared residuals. In (Tomescu et al. BMC Bioinformatics, 2013) we studied this genome-guided multi-assembly problem when the number of allowed solution paths was linear in the number of arcs. In this paper, we further refine this problem by asking for a bounded number k of solution paths, which is the setting of most practical interest. We formulate this problem in very broad terms, and show that for many choices of the fitting function it becomes NP-hard. Nevertheless, we identify a natural graph parameter of a DAG G, which we call arc-width and denote ⟨G⟩, and give a dynamic programming algorithm running in time O(W(k)⟨G⟩(k)(⟨G⟩+ k)n) , where n is the number of vertices and W is the maximum weight of G. This implies that the problem is fixed-parameter tractable (FPT) in the parameters W, ⟨G⟩, and k. We also show that the arc-width of DAGs constructed from simulated and real RNA-Seq reads is small in practice. Finally, we study the approximability of this problem, and, in particular, give a fully polynomial-time approximation scheme (FPTAS) for the case when the fitting function penalizes the maximum ratio between the weights of the arcs and their predicted coverage.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Genoma/genética , ARN/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA