Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 25(25): 6362-6377, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30762256

RESUMEN

In recent years, liquid crystals (LCs) responding to light or electrical fields have gained significant importance as multifunctional materials. Herein, two new series of photoswitchable bent-core liquid crystals (BCLCs) derived from 4-cyanoresorcinol as the central core connected to an azobenzene based wing and a phenyl benzoate wing are reported. The self-assembly of these molecules was characterized by differential scanning calorimetry (DSC), polarizing light microscopy (POM), electro-optical, dielectric, second harmonic generation (SHG) studies, and XRD. Depending on the direction of the COO group in the phenyl benzoate wing, core-fluorination, temperature, and the terminal alkyl chain length, cybotactic nematic and lamellar (smectic) LC phases were observed. The coherence length of the ferroelectric fluctuations increases continuously with decreasing temperature and adopts antipolar correlation upon the condensation into superparaelectric states of the paraelectric smectic phases. Finally, long-range polar order develops at distinct phase transitions; first leading to polarization modulated and then to nonmodulated antiferroelectric smectic phases. Conglomerates of chiral domains were observed in the high permittivity ranges of the synclinic tilted paraelectric smectic phases of these achiral molecules, indicating mirror symmetry breaking. Fine-tuning of the molecular structure leads to photoresponsive bent-core (BC)LCs exhibiting a fast and reversible photoinduced change of the mode of the switching between ferroelectric- and antiferroelectric-like as well as a light-induced switching between an achiral and a spontaneous mirror-symmetry-broken LC phase.

2.
Biomedicines ; 10(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35203416

RESUMEN

Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.

3.
Materials (Basel) ; 13(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664211

RESUMEN

Organ-on-a-chip devices are gaining popularity in medical research due to the possibility of performing extremely complex living-body-resembling research in vitro. For this reason, there is a substantial drive in developing technologies capable of producing such structures in a simple and, at the same time, flexible manner. One of the primary challenges in producing organ-on-chip devices from a manufacturing standpoint is the prevalence of layer-by-layer bonding techniques, which result in limitations relating to the applicable materials and geometries and limited repeatability. In this work, we present an improved approach, using three dimensional (3D) laser lithography for the direct integration of a functional part-the membrane-into a closed-channel system. We show that it allows the freely choice of the geometry of the membrane and its integration into a complete organ-on-a-chip system. Considerations relating to sample preparation, the writing process, and the final preparation for operation are given. Overall, we consider that the broader application of 3D laser lithography in organ-on-a-chip fabrication is the next logical step in this field's evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA