Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 239, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864169

RESUMEN

BACKGROUND: Inflammasome activation and the subsequent release of pro-inflammatory cytokines including Interleukin 1ß (IL-1ß) have been widely reported to contribute to the progression of retinal degenerations, including age-related macular degeneration (AMD), the leading cause of blindness in the Western World. The role of Gasdermin D (GSDMD), a key executioner of pyroptosis following inflammasome activation, however, is less well-established. In this study we aimed to characterise the role of GSDMD in the healthy and degenerating retina, and uncover its role as a conduit for IL-1ß release, including via extracellular vesicle (EV)-mediated release. METHODS: GSDMD mutant and knockout mice, in vitro models of inflammation and a well-established in vivo model of retinal degeneration (photo-oxidative damage; PD) were utilised to explore the role and pathological contribution of GSDMD in regulating IL-1ß release and propagating retinal inflammation. RNA sequencing of whole retinas was used to investigate GSDMD-mediated inflammation during degeneration. The role of EVs in GSDMD-mediated IL-1ß release was investigated using nanoparticle tracking analysis, ELISA and EV inhibition paradigms. Finally, the therapeutic efficacy of targeting GSDMD was examined using GSDMD-specific siRNA. RESULTS: We identified in this work that mice deficient in GSDMD had better-preserved retinal function, increased photoreceptor survivability and reduced inflammation. RNA-Seq analysis revealed that GSDMD may propagate inflammation in the retina via NF-κB signalling cascades and release of pro-inflammatory cytokines. We also showed that IL-1ß was packaged and released via EV in a GSDMD-dependent manner. Finally, we demonstrated that impairing GSDMD function using RNAi or blocking EV release was able to reduce IL-1ß content in cell-free supernatant and EV. CONCLUSIONS: Taken together, these results suggest that pyroptotic pore-forming protein GSDMD plays a key role in the propagation of retinal inflammation, in particular via the release of EV-encapsulated IL-1ß. Targeting GSDMD using genetic or pharmacological inhibitors may pose a therapeutic opportunity to dampen inflammatory cascades and delay the progression of retinal degeneration.


Asunto(s)
Piroptosis , Degeneración Retiniana , Animales , Ratones , Citocinas/metabolismo , Gasderminas , Inflamasomas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Piroptosis/fisiología
2.
Sci Adv ; 10(4): eadh3409, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277448

RESUMEN

The innate immune response contributes to the development or attenuation of acute and chronic diseases, including cancer. Microbial DNA and mislocalized DNA from damaged host cells can activate different host responses that shape disease outcomes. Here, we show that mice and humans lacking a single allele of the DNA repair protein Ku70 had increased susceptibility to the development of intestinal cancer. Mechanistically, Ku70 translocates from the nucleus into the cytoplasm where it binds to cytosolic DNA and interacts with the GTPase Ras and the kinase Raf, forming a tripartite protein complex and docking at Rab5+Rab7+ early-late endosomes. This Ku70-Ras-Raf signalosome activates the MEK-ERK pathways, leading to impaired activation of cell cycle proteins Cdc25A and CDK1, reducing cell proliferation and tumorigenesis. We also identified the domains of Ku70, Ras, and Raf involved in activating the Ku70 signaling pathway. Therapeutics targeting components of the Ku70 signalosome could improve the treatment outcomes in cancer.


Asunto(s)
Neoplasias , Transducción de Señal , Animales , Humanos , Ratones , Proliferación Celular , ADN , Sistema de Señalización de MAP Quinasas , Neoplasias/genética
3.
Methods Mol Biol ; 2691: 327-335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355555

RESUMEN

Intestinal fibroblasts maintain homeostasis and contribute to inflammatory responses and the development of cancer. Intestinal fibroblasts express pattern recognition receptors which can mount an immune response. Since intestinal fibroblasts interact with diverse immune and nonimmune cells, further insights into the biology of intestinal fibroblasts could expand our knowledge of the development, homeostasis, and pathophysiology of the intestine. Here, we describe a simple protocol for the isolation, cultivation, and maintenance of primary fibroblasts from the mouse colon. These cells express α-smooth muscle actin, a characteristic of specialized contractile fibroblasts called myofibroblasts. We also outline the use of these colonic fibroblasts for immunoblotting and immunofluorescence assays with or without stimulation with a growth factor.


Asunto(s)
Fibroblastos , Intestinos , Ratones , Animales , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Colon/metabolismo , Actinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA