Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 210(8): 1086-1097, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36883861

RESUMEN

Fatty acid-binding protein 4 (FABP4) is a critical immune-metabolic modulator, mainly expressed in adipocytes and macrophages, secreted from adipocytes in association with lipolysis, and plays essential pathogenic roles in cardiovascular and metabolic diseases. We previously reported Chlamydia pneumoniae infecting murine 3T3-L1 adipocytes and causing lipolysis and FABP4 secretion in vitro. However, it is still unknown whether C. pneumoniae intranasal lung infection targets white adipose tissues (WATs), induces lipolysis, and causes FABP4 secretion in vivo. In this study, we demonstrate that C. pneumoniae lung infection causes robust lipolysis in WAT. Infection-induced WAT lipolysis was diminished in FABP4-/- mice or FABP4 inhibitor-pretreated wild-type mice. Infection by C. pneumoniae in wild-type but not FABP4-/- mice induces the accumulation of TNF-α- and IL-6-producing M1-like adipose tissue macrophages in WAT. Infection-induced WAT pathology is augmented by endoplasmic reticulum (ER) stress/the unfolded protein response (UPR), which is abrogated by treatment with azoramide, a modulator of the UPR. C. pneumoniae lung infection is suggested to target WAT and induce lipolysis and FABP4 secretion in vivo via ER stress/UPR. FABP4 released from infected adipocytes may be taken up by other neighboring intact adipocytes or adipose tissue macrophages. This process can further induce ER stress activation and trigger lipolysis and inflammation, followed by FABP4 secretion, leading to WAT pathology. A better understanding of the role of FABP4 in C. pneumoniae infection-induced WAT pathology will provide the basis for rational intervention measures directed at C. pneumoniae infection and metabolic syndrome, such as atherosclerosis, for which robust epidemiologic evidence exists.


Asunto(s)
Tejido Adiposo Blanco , Infecciones por Chlamydophila , Proteínas de Unión a Ácidos Grasos , Neumonía Bacteriana , Animales , Ratones , Tejido Adiposo Blanco/patología , Chlamydophila pneumoniae , Proteínas de Unión a Ácidos Grasos/metabolismo , Pulmón/microbiología , Pulmón/patología , Infecciones por Chlamydophila/patología , Neumonía Bacteriana/patología
2.
J Labelled Comp Radiopharm ; 66(3): 95-107, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791689

RESUMEN

CuI-mediated 11 C-cyanation was evaluated by synthesizing [11 C]perampanel ([11 C]5) as a model compound and compared with previous reports. To a DMF solution with 5'-(2-bromophenyl)-1'-phenyl-[2,3'-bipyridin]-6'(1'H)-one (4) and CuI, [11 C]NH4 CN in a stream of ammonia/nitrogen (5:95, v/v) gas was bubbled. Subsequently, the reaction mixture was heated at 180°C for 5 min. After HPLC purification, [11 C]5 was obtained in 7.2 ± 1.0% (n = 4) non-decay corrected radiochemical yield with >99% radiochemical purity and a molar activity of 98 ± 28 GBq/µmol. In vivo evaluations of [11 C]5 were performed using small animals. PET scans to check the kinetics of [11 C]5 in the whole body of mice suggested that [11 C]5 spreads rapidly into the brain, heart, and lungs and then accumulates in the small intestine. To evaluate the performance of CuI-mediated 11 C-cyanation reaction, bromobenzene (6a) was selected as the model compound; however, it failed. Therefore, optimization of the reaction conditions has been performed, and consequently, the addition of K2 CO3 and prolonging the reaction time improved the radiochemical yield about double. With this improved method, CuI-mediated 11 C-cyanation of various (hetero)aromatic bromides was performed to exhibit the tolerance of most functional groups and to provide 11 C-cyanated products in good to moderate radiochemical yields.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Ratones , Radioisótopos de Carbono/química , Tomografía de Emisión de Positrones/métodos
3.
J Labelled Comp Radiopharm ; 65(5): 140-146, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35122288

RESUMEN

We have developed 8-amino-3-(2S,5R-dimethyl-1-piperidyl)-[1,2,4]triazolo[4,3-a]pyrazine-5-[11 C]carbonitrile ([11 C]MTP38) as a positron emission tomography (PET) tracer for the imaging of phosphodiesterase 7. For the fully automated production of [11 C]MTP38 routinely and efficiently for clinical applications, we determined the radiosynthesis procedure of [11 C]MTP38 using [11 C]hydrogen cyanide ([11 C]HCN) as a PET radiopharmaceutical. Radiosynthesis of [11 C]MTP38 was performed using an automated 11 C-labeling synthesizer developed in-house within 40 min after the end of irradiation. [11 C]MTP38 was obtained with a relatively high radiochemical yield (33 ± 5.5% based on [11 C]CO2 at the end of irradiation, decay-corrected, n = 15), radiochemical purity (>97%, n = 15), and molar activity (47 ± 12 GBq/µmol at the end of synthesis, n = 15). All the results of the quality control (QC) testing for the [11 C]MTP38 injection complied with our in-house QC and quality assurance specifications. We successfully automated the radiosynthesis of [11 C]MTP38 for clinical applications using an 11 C-labeling synthesizer and sterile isolator. Taken together, this protocol provides a new radiopharmaceutical [11 C]MTP38 suitable for clinical applications.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7 , Radiofármacos , Cianuro de Hidrógeno , Tomografía de Emisión de Positrones/métodos , Radioquímica/métodos
4.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806436

RESUMEN

Chlamydia trachomatis, a parasitic intracellular bacterium, is a major human pathogen that causes millions of trachoma, sexually transmitted infections, and pneumonia cases worldwide. Previously, peptidomimetic inhibitors consisting of a hydrophobic dipeptide derivative exhibited significant inhibitory effects against chlamydial growth. Based on this finding, this study showed that both bortezomib (BTZ) and ixazomib (IXA), anticancer drugs characterized by proteasome inhibitors, have intensive inhibitory activity against Chlamydia. Both BTZ and IXA consisted of hydrophobic dipeptide derivatives and strongly restricted the growth of Chlamydia (BTZ, IC50 = 24 nM). In contrast, no growth inhibitory effect was observed for other nonintracellular parasitic bacteria, such as Escherichia coli. BTZ and IXA appeared to inhibit chlamydial growth bacteriostatically via electron microscopy. Surprisingly, Chlamydia-infected cells that induced a persistent infection state were selectively eliminated by BTZ treatment, whereas uninfected cells survived. These results strongly suggested the potential of boron compounds based on hydrophobic dipeptides for treating chlamydial infections, including persistent infections, which may be useful for future therapeutic use in chlamydial infectious diseases.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Apoptosis , Bortezomib/farmacología , Infecciones por Chlamydia/tratamiento farmacológico , Infecciones por Chlamydia/microbiología , Dipéptidos/farmacología , Humanos
5.
J Biol Chem ; 295(9): 2713-2723, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992597

RESUMEN

Fatty acid-binding protein 4 (FABP4) is predominantly expressed in adipocytes and macrophages and regulates metabolic and inflammatory pathways. FABP4 is secreted from adipocytes during lipolysis, and elevated circulating FABP4 levels are associated with obesity, metabolic disease, and cardiac dysfunction. We previously reported that the bacterial respiratory pathogen Chlamydia pneumoniae infects murine adipocytes and exploits host FABP4 to mobilize fat and replicate within adipocytes. However, whether C. pneumoniae induces FABP4 secretion from adipocytes has not been determined. Here, we show that FABP4 is actively secreted by murine adipocytes upon C. pneumoniae infection. Chemical inhibition of lipase activity and genetic deficiency of hormone-sensitive lipase blocked FABP4 secretion from C. pneumoniae-infected adipocytes. Mechanistically, C. pneumoniae infection induced endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in elevated levels of mitochondrial reactive oxygen species and cytosolic Ca2+ Of note, exposure to a mitochondrial reactive oxygen species-specific scavenger, MitoTEMPO, reduced FABP4 release from C. pneumoniae-infected adipocytes. Furthermore, treatment with azoramide, which protects cells against ER stress, decreased FABP4 release from C. pneumoniae-infected adipocytes. Using gene silencing of CHOP (C/EBP homologous protein), a central regulator of ER stress, we further validated the role of C. pneumoniae infection-induced ER stress/UPR in promoting FABP4 secretion. Overall, these results indicate that C. pneumoniae infection robustly induces FABP4 secretion from adipocytes by stimulating ER stress/UPR. Our findings shed additional light on the etiological link between C. pneumoniae infection and metabolic syndrome.


Asunto(s)
Adipocitos/metabolismo , Infecciones por Chlamydophila/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Unión a Ácidos Grasos/metabolismo , Adipocitos/patología , Tejido Adiposo/metabolismo , Animales , Calcio/metabolismo , Lipasa/antagonistas & inhibidores , Síndrome Metabólico/etiología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada
6.
J Labelled Comp Radiopharm ; 64(3): 109-119, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067819

RESUMEN

Recently, we produced 11 C-labeled 2-((1E,3E)-4-(6-(methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ([11 C]PBB3) as a clinically useful positron emission tomography (PET) tracer for in vivo imaging of tau pathologies in the human brain. To overcome the limitations (i.e., rapid in vivo metabolism and short half-life) of [11 C]PBB3, we further synthesized 18 F-labeled 1-fluoro-3-((2-((1E,3E)-4-(6-(methylamino)pyridine-3-yl)buta-1,3-dien-1-yl)benzo[d]thiazol-6-yl)oxy)propan-2-ol ([18 F]PM-PBB3). [18 F]PM-PBB3 is also a useful tau PET tracer for imaging tau pathologies. In this study, we developed a routine radiosynthesis and quality control testing of [18 F]PM-PBB3 for clinical applications. [18 F]PM-PBB3 was synthesized by direct 18 F-fluorination of the tosylated derivative, followed by removal of the protecting group. [18 F]PM-PBB3 was obtained with sufficient radioactivity (25 ± 6.0% of the nondecay-corrected radiochemical yield at the end of synthesis, EOS), radiochemical purity (98 ± 0.6%), and molar activity (350 ± 94 GBq/µmol at EOS; n = 53). Moreover, [18 F]PM-PBB3 consistently retained >95% of radiochemical purity for 60 min without undergoing photoisomerization using a new UV-cutoff light (yellow light) fixed in the hot cell to monitor the synthesis. All the results of the quality control testing for the [18 F]PM-PBB3 injection complied with our in-house quality control and quality assurance specifications. We have accomplished >200 production runs of [18 F]PM-PBB3 in our facility for various research purposes.


Asunto(s)
Tomografía de Emisión de Positrones
7.
Cell Microbiol ; 21(1): e12962, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30311994

RESUMEN

Chlamydia trachomatis is an obligate intracellular bacterium that scavenges host metabolic products for its replication. Mitochondria are the power plants of eukaryotic cells and provide most of the cellular ATP via oxidative phosphorylation. Several intracellular pathogens target mitochondria as part of their obligatory cellular reprogramming. This study was designed to analyse the mitochondrial morphological changes in response to C. trachomatis infection in HeLa cells. Mitochondrial elongation and fragmentation were found at the early stages and late stages of C. trachomatis infection, respectively. C. trachomatis infection-induced mitochondrial elongation was associated with the increase of mitochondrial respiratory activity, ATP production, and intracellular growth of C. trachomatis. Silencing mitochondrial fusion mediator proteins abrogated the C. trachomatis infection-induced elevation in the oxygen consumption rate and attenuated chlamydial proliferation. Mechanistically, C. trachomatis induced the elevation of intracellular cAMP at the early phase of infection, followed by the phosphorylation of fission-inactive serine residue 637 (S637) of Drp1, resulting in mitochondrial elongation. Accordingly, treatment with adenylate cyclase inhibitor diminished mitochondrial elongation and bacterial growth in infected cells. Collectively, these results strongly indicate that C. trachomatis promotes its intracellular growth by targeting mitochondrial dynamics to regulate ATP synthesis via inhibition of the fission mediator Drp1.


Asunto(s)
Infecciones por Chlamydia/patología , Chlamydia trachomatis/crecimiento & desarrollo , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Viabilidad Microbiana , Mitocondrias/patología , Dinámicas Mitocondriales , Adenosina Trifosfato/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Modelos Teóricos
8.
Bioorg Med Chem Lett ; 30(23): 127555, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32941990

RESUMEN

Selective metabotropic glutamate receptor 2 (mGluR2) inhibitors have been demonstrated to show therapeutic effects by improving alleviating symptoms of schizophrenic patients in clinical studies. Herein we report the synthesis and preliminary evaluation of a 11C-labeled positron emission tomography (PET) tracer originating from a mGluR2 inhibitor, 3-(cyclopropylmethyl)-7-((4-(4-methoxyphenyl)piperidin-1-yl)methyl)-8-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (CMTP, 1a). [11C]CMTP ([11C]1a) was synthesized by O-[11C]methylation of desmethyl precursor 1b with [11C]methyl iodide in 19.7 ± 8.9% (n = 10) radiochemical yield (based on [11C]CO2) with >98% radiochemical purity and >74 GBq/µmol molar activity. Autoradiography study showed that [11C]1a possessed moderate in vitro specific binding to mGluR2 in the rat brain, with a heterogeneous distribution of radioactive accumulation in the mGluR2-rich brain tissue sections, such as the cerebral cortex and striatum. PET study indicated that [11C]1a was able to cross the blood-brain barrier and enter the brain, but had very low specific binding in the rat brain. Further optimization for the chemical structure of 1a is necessary to increase binding affinity to mGluR2 and then improve in vivo specific binding in brain.


Asunto(s)
Medios de Contraste/farmacología , Piridinas/farmacología , Radiofármacos/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Triazoles/farmacología , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Medios de Contraste/síntesis química , Medios de Contraste/metabolismo , Masculino , Tomografía de Emisión de Positrones , Piridinas/síntesis química , Piridinas/metabolismo , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Ratas Sprague-Dawley , Triazoles/síntesis química , Triazoles/metabolismo
9.
Bioorg Med Chem ; 27(16): 3568-3573, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31278005

RESUMEN

Monoacylglycerol lipase (MAGL) is a major serine hydrolase that hydrolyses 2-arachidonoylglycerol (2-AG) into arachidonic acid (AA) and glycerol in the brain. Because 2-AG and AA are endogenous biologically active ligands in the brain, the inhibition of MAGL is an attractive therapeutic target for neurodegenerative diseases. In this study, to visualize MAGL via positron emission tomography (PET), we report a new carbon-11-labeled radiotracer, namely 1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-benzyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate ([11C]6). Compound 6 exhibited high in vitro binding affinity (IC50 = 0.41 nM) to MAGL in the brain with a suitable lipophilicity (cLogD = 3.29). [11C]6 was synthesized by reacting 1,1,1,3,3,3-hexafluoropropanol (7) with [11C]phosgene ([11C]COCl2), followed by a reaction with 3-(1-benzyl-1H-pyrazol-3-yl)azetidine hydrochloride (8), which resulted in a 15.0 ±â€¯6.8% radiochemical yield (decay-corrected, n = 7) based on [11C]CO2 and a 45 min synthesis time from the end of bombardment. A biodistribution study in mice showed high uptake of radioactivity in MAGL-rich organs, including the lungs, heart, and kidneys. More than 90% of the total radioactivity was irreversibly bound in the brain homogenate of rats 5 min and 30 min after the radiotracer injection. PET summation images of rat brains showed high radioactivity in all brain regions. Pretreatment with 6 or MAGL-selective inhibitor JW642 significantly reduced the uptake of radioactivity in the brain. [11C]6 is a promising PET tracer which offers in vivo specific binding and selectivity for MAGL in rodent brains.


Asunto(s)
Carbamatos/química , Monoacilglicerol Lipasas/síntesis química , Animales , Radioisótopos de Carbono/metabolismo , Ratas
10.
Neuroimage ; 176: 313-320, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29738910

RESUMEN

Monoacylglycerol lipase (MAGL) is a main regulator of the endocannabinoid system within the central nervous system (CNS). Recently, [11C]SAR127303 was developed as a promising radioligand for MAGL imaging. In this study, we aimed to quantify regional MAGL concentrations in the rat brain using positron emission tomography (PET) with [11C]SAR127303. An irreversible two-tissue compartment model (2-TCMi, k4 = 0) analysis was conducted to estimate quantitative parameters (k3, Ki2-TCMi, and λk3). These parameters were successfully obtained with high identifiability (<10 %COV) for the following regions ranked in order from highest to lowest: cingulate cortex > striatum > hippocampus > thalamus > cerebellum > hypothalamus ≈ pons. In vitro autoradiographs using [11C]SAR127303 showed a heterogeneous distribution of radioactivity, as seen in the PET images. The Ki2-TCMi and λk3 values correlated relatively highly with in vitro binding (r > 0.4, P < 0.005). The Ki2-TCMi values showed high correlation and low underestimation (<10%) compared with the slope of a Patlak plot analysis with linear regression (KiPatlak). In conclusion, we successfully estimated regional net uptake value of [11C]SAR127303 reflecting MAGL concentrations in rat brain regions for the first time.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Teóricos , Monoacilglicerol Lipasas/metabolismo , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Carbamatos , Radioisótopos de Carbono , Masculino , Ratas , Ratas Sprague-Dawley , Sulfonamidas
11.
Mol Imaging ; 17: 1536012118795952, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30251592

RESUMEN

CEP-32496, also known as RXDX-105 or Agerafenib, is a new orally active inhibitor for the mutated v-raf murine sarcoma viral oncogene homolog B1 (BRAFV600E), which has attracted considerable attention in clinical trials for the treatment of human cancers. Here, we used carbon-11-labeled CEP-32496 ([11C]CEP-32496) as a positron emission tomography (PET) radiotracer to evaluate its pharmacokinetic properties and explore its potential for in vivo imaging. Following radiotracer synthesis, we performed in vitro binding assays and autoradiography of [11C]CEP-32496 in the A375 melanoma cell line and on tumor tissue sections from mice harboring the BRAFV600E mutation. These were followed by PET scans and biodistribution studies on nude mice bearing subcutaneous A375 cell-induced melanoma. [11C]CEP-32496 showed high binding affinity for BRAFV600E-positive A375 melanoma cells and densely accumulated in the respective tissue sections; this could be blocked by the BRAFV600E selective antagonist sorafenib and by unlabeled CEP-32496. The PET and biodistribution results revealed that [11C]CEP-32496 accumulated continuously but slowly into the tumor within a period of 0 to 60 minutes postinjection in A375-melanoma-bearing nude mice. Metabolite analysis showed high in vivo stability of [11C]CEP-32496 in plasma. Our results indicate that [11C]CEP-32496 has excellent specificity and affinity for the BRAFV600E mutation in vitro, while its noninvasive personalized diagnostic role needs to be studied further.


Asunto(s)
Melanoma/genética , Mutación/genética , Compuestos de Fenilurea/farmacocinética , Proteínas Proto-Oncogénicas B-raf/genética , Quinazolinas/farmacocinética , Animales , Autorradiografía , Línea Celular Tumoral , Humanos , Lípidos/química , Melanoma/sangre , Melanoma/orina , Ratones Desnudos , Compuestos de Fenilurea/sangre , Compuestos de Fenilurea/química , Compuestos de Fenilurea/orina , Quinazolinas/sangre , Quinazolinas/química , Quinazolinas/orina , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Biochem Biophys Res Commun ; 495(1): 353-359, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29108997

RESUMEN

Fatty acid-binding protein 4 (FABP4), a cytosolic lipid chaperone predominantly expressed in adipocytes and macrophages, modulates lipid fluxes, trafficking, signaling, and metabolism. Recent studies have demonstrated that FABP4 regulates metabolic and inflammatory pathways, and in mouse models its inhibition can improve type 2 diabetes mellitus and atherosclerosis. However, the role of FABP4 in bacterial infection, metabolic crosstalk between host and pathogen, and bacterial pathogenesis have not been studied. As an obligate intracellular pathogen, Chlamydia pneumoniae needs to obtain nutrients such as ATP and lipids from host cells. Here, we show that C. pneumoniae successfully infects and proliferates in murine adipocytes by inducing hormone sensitive lipase (HSL)-mediated lipolysis. Chemical inhibition or genetic manipulation of HSL significantly abrogated the intracellular growth of C. pneumoniae in adipocytes. Liberated free fatty acids were utilized to generate ATP via ß-oxidation, which C. pneumoniae usurped for its replication. Strikingly, chemical inhibition or genetic silencing of FABP4 significantly abrogated C. pneumoniae infection-induced lipolysis and mobilization of liberated FFAs, resulting in reduced bacterial growth in adipocytes. Collectively, these results demonstrate that C. pneumoniae exploits host FABP4 to facilitate fat mobilization and intracellular replication in adipocytes. This work uncovers a novel strategy used by intracellular pathogens for acquiring energy via hijacking of the host lipid metabolism pathway.


Asunto(s)
Adipocitos/microbiología , Adipocitos/fisiología , Chlamydophila pneumoniae/fisiología , Proteínas de Unión a Ácidos Grasos/metabolismo , Movilización Lipídica/fisiología , Esterol Esterasa/metabolismo , Células 3T3-L1 , Animales , Proliferación Celular/fisiología , Chlamydophila pneumoniae/citología , Ratones
13.
Bioorg Med Chem Lett ; 27(19): 4521-4524, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28888821

RESUMEN

The purpose of this study was to synthesize a new positron emission tomography radiotracer, N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-[11C]carboxamide ([11C]BCTC, [11C]1), and assess its in vivo binding to the transient receptor potential vanilloid subfamily member 1 (TRPV1) receptor in mice. [11C]BCTC was synthesized by reacting the hydrochloride of 4-tertiarybutylaniline (2·HCl) with [11C]phosgene ([11C]COCl2) to give isocyanate [11C]4, followed by reaction with 4-(3-chloropyridin-2-yl)tetrahydropyrazine (3). [11C]BCTC was obtained at a 16-20% radiochemical yield, based on the cyclotron-produced [11C]CO2 (decay-corrected to the end of bombardment), with >98% radiochemical purity and 65-110GBq/µmol specific activity at the end of synthesis. An ex vivo biodistribution study in mice confirmed the specific binding of [11C]BCTC to TRPV1 in the trigeminal nerve, which is a tissue with high TRPV1 expression.


Asunto(s)
Pirazinas/farmacocinética , Piridinas/farmacocinética , Canales Catiónicos TRPV/química , Nervio Trigémino/química , Animales , Sitios de Unión/efectos de los fármacos , Isótopos de Carbono , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos , Estructura Molecular , Tomografía de Emisión de Positrones , Pirazinas/síntesis química , Pirazinas/química , Piridinas/síntesis química , Piridinas/química , Trazadores Radiactivos , Relación Estructura-Actividad , Canales Catiónicos TRPV/biosíntesis , Distribución Tisular
14.
J Cell Sci ; 127(Pt 14): 3184-96, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24838945

RESUMEN

When mitophagy is induced in Saccharomyces cerevisiae, the mitochondrial outer membrane protein ScAtg32 interacts with the cytosolic adaptor protein ScAtg11. ScAtg11 then delivers the mitochondria to the pre-autophagosomal structure for autophagic degradation. Despite the importance of ScAtg32 for mitophagy, the expression and functional regulation of ScAtg32 are poorly understood. In this study, we identified and characterized the ScAtg32 homolog in Pichia pastoris (PpAtg32). Interestingly, we found that PpAtg32 was barely expressed before induction of mitophagy and was rapidly expressed after induction of mitophagy by starvation. Additionally, PpAtg32 was phosphorylated when mitophagy was induced. We found that PpAtg32 expression was suppressed by Tor and the downstream PpSin3-PpRpd3 complex. Inhibition of Tor by rapamycin induced PpAtg32 expression, but could neither phosphorylate PpAtg32 nor induce mitophagy. Based on these findings, we conclude that the Tor and PpSin3-PpRpd3 pathway regulates PpAtg32 expression, but not PpAtg32 phosphorylation.


Asunto(s)
Autofagia/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Proteínas Relacionadas con la Autofagia , Unión Proteica , Saccharomyces cerevisiae/citología , Proteínas de Transporte Vesicular/metabolismo
15.
Bioorg Med Chem ; 24(4): 627-34, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26740152

RESUMEN

To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[(11)C]methylphenyl)thiazol-2-yl]-1-carboxamide ([(11)C]DFMC, [(11)C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1nM) for FAAH. [(11)C]1 was synthesized by C-(11)C coupling reaction of arylboronic ester 2 with [(11)C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [(11)C]1 was obtained with a radiochemical yield of 20±10% (based on [(11)C]CO2, decay-corrected, n=5) and specific activity of 48-166GBq/µmol. After the injection of [(11)C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [(11)C]1 revealed high uptakes in the cerebellar nucleus (SUV=2.4) and frontal cortex (SUV=2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30min after the radioligand injection. The present results indicate that [(11)C]1 is a promising PET ligand for imaging of FAAH in living brain.


Asunto(s)
Amidohidrolasas/metabolismo , Piperazinas/farmacología , Tomografía de Emisión de Positrones/métodos , Radiofármacos/análisis , Tiazoles/farmacología , Amidohidrolasas/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Carbamatos/farmacología , Radioisótopos de Carbono , Humanos , Ligandos , Ratones , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Radiofármacos/administración & dosificación , Radiofármacos/química , Ratas , Tiazoles/síntesis química , Tiazoles/química , Distribución Tisular
16.
EMBO Rep ; 14(9): 788-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897086

RESUMEN

Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase-deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32-Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Mitofagia , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , Quinasa de la Caseína II/genética , Mitocondrias/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Int J Infect Dis ; 139: 1-5, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029832

RESUMEN

OBJECTIVES: It is crucial to analyze the consequences of repeated messenger RNA (mRNA)-based COVID-19 vaccinations on SARS-CoV-2 spike receptor binding domain (RBD)-specific immunoglobulin (Ig)G subclass and the possible causal relationship with breakthrough infection. METHODS: We examined the longitudinal kinetics of RBD-specific IgG subclass antibodies in sera after receiving the second, third, and fourth doses of mRNA-based COVID-19 vaccines in Japanese healthcare workers. Anti-RBD IgG subclass in sera of patients with COVID-19-infected who had not received the COVID-19 vaccine were also examined. We compared anti-RBD IgG subclass antibody titers in the serum of pre-breakthrough-infected vaccinees and non-infected vaccinees. RESULTS: The seropositivity of anti-RBD IgG4 after the vaccination was 6.76% at 1 month after the second dose, gradually increased to 50.5% at 6 months after the second dose, and reached 97.2% at 1 month after the third dose. The seropositivity and titers of anti-RBD IgG1/IgG3 quickly reached the maximum at 1 month after the second dose and declined afterward. The elevated anti-RBD IgG4 Ab levels observed after repeated vaccinations were unlikely to increase the risk of breakthrough infection. CONCLUSIONS: Repeated vaccinations induce delayed but drastic increases in anti-RBD IgG4 responses. Further functional investigations are needed to reveal the magnitude of the high contribution of spike-specific IgG4 subclasses after repeated mRNA-based COVID-19 vaccinations.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Infección Irruptiva , SARS-CoV-2 , Inmunización , Vacunación , Inmunoglobulina G , ARN Mensajero/genética , Anticuerpos Antivirales
18.
Heliyon ; 10(1): e23595, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187240

RESUMEN

Objectives: This study aims to examine whether the parenterally administered mRNA-based COVID-19 vaccines can induce sufficient mucosal-type IgA responses to prevent SARS-CoV-2 transmission. Methods: We examined the longitudinal kinetics of SARS-CoV-2 spike RBD-specific IgA and IgG responses in sera of Japanese healthcare workers (HCWs) after receiving two doses and the third dose of BNT162b2 mRNA vaccines. During the prospective cohort study, Omicron breakthrough infections occurred in 62 participants among 370 HCWs who had received triple doses of the vaccine. Pre-breakthrough sera of infected HCWs and non-infected HCWs were examined for the levels of anti-RBD IgA and IgG titers. Results: The seropositivity of anti-RBD IgA at 1 M after the second vaccine (2D-1M) and after the third dose (3D-1M) was 65.4% and 87.4%, respectively, and wanes quickly. The boosting effect on anti-RBD Ab titers following breakthrough infections was more notable for anti-RBD IgA than for IgG. There were partial cause-relationships between the lower anti-RBD IgA or IgG at pre-breakthrough sera and the breakthrough infection. Conclusions: Parenterally administered COVID-19 vaccines do not generate sufficient mucosal-type IgA responses despite strong systemic IgG responses to SARS-CoV-2. These results demonstrate the necessity and importance of reevaluating vaccine design and scheduling to efficiently increase oral or respiratory mucosal immunity against SARS-CoV-2.

19.
Brain Commun ; 6(3): fcae172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863573

RESUMEN

Intracellular pH is a valuable index for predicting neuronal damage and injury. However, no PET probe is currently available for monitoring intracellular pH in vivo. In this study, we developed a new approach for visualizing the hydrolysis rate of monoacylglycerol lipase, which is widely distributed in neurons and astrocytes throughout the brain. This approach uses PET with the new radioprobe [11C]QST-0837 (1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-phenyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate), a covalent inhibitor containing an azetidine carbamate skeleton for monoacylglycerol lipase. The uptake and residence of this new radioprobe depends on the intracellular pH gradient, and we evaluated this with in silico, in vitro and in vivo assessments. Molecular dynamics simulations predicted that because the azetidine carbamate moiety is close to that of water molecules, the compound containing azetidine carbamate would be more easily hydrolyzed following binding to monoacylglycerol lipase than would its analogue containing a piperidine carbamate skeleton. Interestingly, it was difficult for monoacylglycerol lipase to hydrolyze the azetidine carbamate compound under weakly acidic (pH 6) conditions because of a change in the interactions with water molecules on the carbamate moiety of their complex. Subsequently, an in vitro assessment using rat brain homogenate to confirm the molecular dynamics simulation-predicted behaviour of the azetidine carbamate compound showed that [11C]QST-0837 reacted with monoacylglycerol lipase to yield an [11C]complex, which was hydrolyzed to liberate 11CO2 as a final product. Additionally, the 11CO2 liberation rate was slower at lower pH. Finally, to indicate the feasibility of estimating how the hydrolysis rate depends on intracellular pH in vivo, we performed a PET study with [11C]QST-0837 using ischaemic rats. In our proposed in vivo compartment model, the clearance rate of radioactivity from the brain reflected the rate of [11C]QST-0837 hydrolysis (clearance through the production of 11CO2) in the brain, which was lower in a remarkably hypoxic area than in the contralateral region. In conclusion, we indicated the potential for visualization of the intracellular pH gradient in the brain using PET imaging, although some limitations remain. This approach should permit further elucidation of the pathological mechanisms involved under acidic conditions in multiple CNS disorders.

20.
J Biol Chem ; 287(5): 3265-72, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22157017

RESUMEN

In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called "petite-mutant" phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.


Asunto(s)
ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia , ADN de Hongos/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA