Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 483(1): 502-508, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28007597

RESUMEN

The investigational compound BIA 10-2474, designed as a long-acting and reversible inhibitor of fatty acid amide hydrolase for the treatment of neuropathic pain, led to the death of one participant and hospitalization of five others due to intracranial hemorrhage in a Phase I clinical trial. Putative off-target activities of BIA 10-2474 have been suggested to be major contributing factors to the observed neurotoxicity in humans, motivating our study's proteome-wide screening approach to investigate its polypharmacology. Accordingly, we performed an in silico screen against 80,923 protein structures reported in the Protein Data Bank. The resulting list of 284 unique human interactors was further refined using target-disease association analyses to a subset of proteins previously linked to neurological, intracranial, inflammatory, hemorrhagic or clotting processes and/or diseases. Eleven proteins were identified as potential targets of BIA 10-2474, and the two highest-scoring proteins, Factor VII and thrombin, both essential blood-clotting factors, were predicted to be inhibited by BIA 10-2474 and suggest a plausible mechanism of toxicity. Once this small molecule becomes commercially available, future studies will be conducted to evaluate the predicted inhibitory effect of BIA 10-2474 on blood clot formation specifically in the brain.


Asunto(s)
Analgésicos/efectos adversos , Óxidos N-Cíclicos/efectos adversos , Óxidos N-Cíclicos/química , Síndromes de Neurotoxicidad/metabolismo , Proteoma/metabolismo , Piridinas/efectos adversos , Piridinas/química , Amidohidrolasas/metabolismo , Analgésicos/química , Analgésicos/farmacocinética , Biología Computacional/métodos , Óxidos N-Cíclicos/farmacocinética , Humanos , Simulación del Acoplamiento Molecular , Proteoma/química , Piridinas/farmacocinética
2.
Front Oncol ; 7: 273, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29184849

RESUMEN

The repositioning or "repurposing" of existing therapies for alternative disease indications is an attractive approach that can save significant investments of time and money during drug development. For cancer indications, the primary goal of repurposed therapies is on efficacy, with less restriction on safety due to the immediate need to treat this patient population. This report provides a high-level overview of how drug developers pursuing repurposed assets have previously navigated funding efforts, regulatory affairs, and intellectual property laws to commercialize these "new" medicines in oncology. This article provides insight into funding programs (e.g., government grants and philanthropic organizations) that academic and corporate initiatives can leverage to repurpose drugs for cancer. In addition, we highlight previous examples where secondary uses of existing, Food and Drug Administration- or European Medicines Agency-approved therapies have been predicted in silico and successfully validated in vitro and/or in vivo (i.e., animal models and human clinical trials) for certain oncology indications. Finally, we describe the strategies that the pharmaceutical industry has previously employed to navigate regulatory considerations and successfully commercialize their drug products. These factors must be carefully considered when repurposing existing drugs for cancer to best benefit patients and drug developers alike.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA