Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(24): 6462-6474, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36044537

RESUMEN

It is crucial for molecular dynamics simulations of biomembranes that the force field parameters give a realistic model of the membrane behavior. In this study, we examined the OPLS3e force field for the carbon-hydrogen order parameters SCH of POPC (1-palmitoyl-2-oleoylphosphatidylcholine) lipid bilayers at varying hydration conditions and ion concentrations. The results show that OPLS3e behaves similarly to the CHARMM36 force field and relatively accurately follows the experimentally measured SCH for the lipid headgroup, the glycerol backbone, and the acyl tails. Thus, OPLS3e is a good choice for POPC bilayer simulations under many biologically relevant conditions. The exception are systems with an abundancy of ions, as similarly to most other force fields OPLS3e strongly overestimates the membrane-binding of cations, especially Ca2+. This leads to undesirable positive charge of the membrane surface and drastically lowers the concentration of Ca2+ in the surrounding solvent, which might cause issues in systems sensitive to correct charge distribution profiles across the membrane.


Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilcolinas , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Simulación de Dinámica Molecular , Hidrógeno
2.
Nat Commun ; 15(1): 1136, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326316

RESUMEN

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.


Asunto(s)
Inteligencia Artificial , Lípidos de la Membrana , Membrana Celular , Simulación de Dinámica Molecular , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA