Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Blood ; 131(4): 426-438, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29187377

RESUMEN

An activating mutation of Fms-like tyrosine kinase 3 (FLT3) is the most frequent genetic alteration associated with poor prognosis in acute myeloid leukemia (AML). Although many FLT3 inhibitors have been clinically developed, no first-generation inhibitors have demonstrated clinical efficacy by monotherapy, due to poor pharmacokinetics or unfavorable safety profiles possibly associated with low selectivity against FLT3 kinase. Recently, a selective FLT3 inhibitor, quizartinib, demonstrated favorable outcomes in clinical studies. However, several resistant mutations emerged during the disease progression. To overcome these problems, we developed a novel FLT3 inhibitor, FF-10101, designed to possess selective and irreversible FLT3 inhibition. The co-crystal structure of FLT3 protein bound to FF-10101 revealed the formation of a covalent bond between FF-10101 and the cysteine residue at 695 of FLT3. The unique binding brought high selectivity and inhibitory activity against FLT3 kinase. FF-10101 showed potent growth inhibitory effects on human AML cell lines harboring FLT3 internal tandem duplication (FLT3-ITD), MOLM-13, MOLM-14, and MV4-11, and all tested types of mutant FLT3-expressing 32D cells including quizartinib-resistant mutations at D835, Y842, and F691 residues in the FLT3 kinase domain. In mouse subcutaneous implantation models, orally administered FF-10101 showed significant growth inhibitory effect on FLT3-ITD-D835Y- and FLT3-ITD-F691L-expressing 32D cells. Furthermore, FF-10101 potently inhibited growth of primary AML cells harboring either FLT3-ITD or FLT3-D835 mutation in vitro and in vivo. These results indicate that FF-10101 is a promising agent for the treatment of patients with AML with FLT3 mutations, including the activation loop mutations clinically identified as quizartinib-resistant mutations.


Asunto(s)
Amidas/uso terapéutico , Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Amidas/farmacocinética , Amidas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Tirosina Quinasa 3 Similar a fms/química
2.
Blood ; 127(14): 1790-802, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26773042

RESUMEN

Adult T-cell leukemia-lymphoma (ATL) shows global gene expression alterations that confer cellular characteristics and unfavorable prognosis. However, molecular mechanisms of the sustained expression changes are largely unknown, because there is no study addressing the relationship between landscapes of the gene expression and epigenetic modifications. Here, we analyzed ATL epigenome and integrated it with transcriptome from primary ATL cells and those from corresponding normal CD4(+)T cells to decipher ATL-specific "epigenetic code" that was critical for cell identity. We found that polycomb-repressive complex 2 (PRC2)-mediated trimethylation at histone H3Lys27 (H3K27me3) was significantly and frequently reprogrammed at half of genes in ATL cells. A large proportion of the abnormal gene downregulation was detected at the early stage of disease progression and was explained by H3K27me3 accumulation. The global H3K27me3 alterations involved ATL-specific gene expression changes that included several tumor suppressors, transcription factors, epigenetic modifiers, miRNAs, and developmental genes, suggesting diverse outcomes by the PRC2-dependent hierarchical regulation. Interestingly, a key enzyme, EZH2, was sensitive to promiscuous signaling network including the NF-κB pathway and was functionally affected by human T-cell leukemia virus type I (HTLV-1) Tax. The Tax-dependent immortalized cells showed H3K27me3 reprogramming that was significantly similar to that of ATL cells. Of note, a majority of the epigenetic silencing has occurred in leukemic cells from indolent ATL and also in HTLV-1-infected T cells from asymptomatic HTLV-1 carriers. Because pharmacologic inhibition of EZH2 reversed epigenetic disruption and selectively eliminated leukemic and HTLV-1-infected cells, targeting the epigenetic elements will hold great promise in treatment and prevention of the onset of ATL and HTLV-1-related diseases.


Asunto(s)
Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma de Células T del Adulto/metabolismo , Proteínas de Neoplasias/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Adulto , Línea Celular Transformada , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Productos del Gen tax/genética , Productos del Gen tax/metabolismo , Histonas/genética , Histonas/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/patología , Masculino , Proteínas de Neoplasias/genética , Complejo Represivo Polycomb 2/genética
3.
Mol Biotechnol ; 56(10): 953-61, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24906817

RESUMEN

Alkaline phosphatases (APs) are a family of dimeric metalloenzymes that has been utilized in many areas due to its ability to hydrolyze a variety of phosphomonoesters. While mammalian APs have higher specific activity than prokaryotic APs, they are generally less thermostable. To cultivate the possibility to confer mammalian APs with higher thermostability as well as high activity, we focused on human AP isozymes. Among the four isozymes of human APs, placental AP (PLAP) retains the highest thermostability, while intestinal AP (IAP) has the highest specific activity. Since the two APs display high homology, a series of chimeric enzymes were made in a secreted form to analyze their properties. Surprisingly, chimeric APs with IAP residues at the N-terminal and PLAP residues at the C-terminal regions showed higher specific activity than PLAP, while keeping thermostability as high as PLAP. Especially, one showed similar specific activity to IAP, while showing slower inactivation than PLAP after incubation at 75°C. Interestingly, the mutant also showed higher resistance to uncompetitive inhibitors Phe and Leu than their parent enzymes, possibly due to increased hydrophilicity of the active site entrance residues. The obtained chimera will be useful as a novel reporter in various assays including gene hybridization.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Proteínas Recombinantes/metabolismo , Fosfatasa Alcalina/aislamiento & purificación , Western Blotting , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Proteínas Ligadas a GPI/metabolismo , Vectores Genéticos/metabolismo , Humanos , Isoenzimas/metabolismo , Cinética , Proteínas Recombinantes/aislamiento & purificación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA