Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29129375

RESUMEN

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiones Promotoras Genéticas
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34815339

RESUMEN

Cytokinin (CK) in plants regulates both developmental processes and adaptation to environmental stresses. Arabidopsis histidine phosphotransfer ahp2,3,5 and type-B Arabidopsis response regulator arr1,10,12 triple mutants are almost completely defective in CK signaling, and the ahp2,3,5 mutant was reported to be salt tolerant. Here, we demonstrate that the arr1,10,12 mutant is also more tolerant to salt stress than wild-type (WT) plants. A comprehensive metabolite profiling coupled with transcriptome analysis of the ahp2,3,5 and arr1,10,12 mutants was conducted to elucidate the salt tolerance mechanisms mediated by CK signaling. Numerous primary (e.g., sugars, amino acids, and lipids) and secondary (e.g., flavonoids and sterols) metabolites accumulated in these mutants under nonsaline and saline conditions, suggesting that both prestress and poststress accumulations of stress-related metabolites contribute to improved salt tolerance in CK-signaling mutants. Specifically, the levels of sugars (e.g., trehalose and galactinol), amino acids (e.g., branched-chain amino acids and γ-aminobutyric acid), anthocyanins, sterols, and unsaturated triacylglycerols were higher in the mutant plants than in WT plants. Notably, the reprograming of flavonoid and lipid pools was highly coordinated and concomitant with the changes in transcriptional levels, indicating that these metabolic pathways are transcriptionally regulated by CK signaling. The discovery of the regulatory role of CK signaling on membrane lipid reprogramming provides a greater understanding of CK-mediated salt tolerance in plants. This knowledge will contribute to the development of salt-tolerant crops with the ability to withstand salinity as a key driver to ensure global food security in the era of climate crisis.


Asunto(s)
Citocininas/metabolismo , Estrés Salino/genética , Adaptación Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/fisiología , Flavonoides/genética , Flavonoides/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Metabolómica/métodos , Salinidad , Estrés Salino/fisiología , Tolerancia a la Sal/genética , Transducción de Señal/fisiología , Estrés Fisiológico/genética
3.
Plant J ; 111(6): 1643-1659, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862290

RESUMEN

Nitrate (NO3 - ) and phosphate (Pi) deficiencies are the major constraints for chickpea productivity, significantly impacting global food security. However, excessive fertilization is expensive and can also lead to environmental pollution. Therefore, there is an urgent need to develop chickpea cultivars that are able to grow on soils deficient in both NO3 - and Pi. This study focused on the identification of key NO3 - and/or Pi starvation-responsive metabolic pathways in the leaves and roots of chickpea grown under single and double nutrient deficiencies of NO3 - and Pi, in comparison with nutrient-sufficient conditions. A global metabolite analysis revealed organ-specific differences in the metabolic adaptation to nutrient deficiencies. Moreover, we found stronger adaptive responses in the roots and leaves to any single than combined nutrient-deficient stresses. For example, chickpea enhanced the allocation of carbon among nitrogen-rich amino acids (AAs) and increased the production of organic acids in roots under NO3 - deficiency, whereas this adaptive response was not found under double nutrient deficiency. Nitrogen remobilization through the transport of AAs from leaves to roots was greater under NO3 - deficiency than double nutrient deficiency conditions. Glucose-6-phosphate and fructose-6-phosphate accumulated in the roots under single nutrient deficiencies, but not under double nutrient deficiency, and higher glycolytic pathway activities were observed in both roots and leaves under single nutrient deficiency than double nutrient deficiency. Hence, the simultaneous deficiency generated a unique profile of metabolic changes that could not be simply described as the result of the combined deficiencies of the two nutrients.


Asunto(s)
Cicer , Aminoácidos/metabolismo , Carbono/metabolismo , Cicer/metabolismo , Glucosa-6-Fosfato/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Suelo
4.
Ann Bot ; 132(3): 455-470, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37688538

RESUMEN

BACKGROUND AND AIMS: Air and root zone temperatures are important environmental factors affecting plant growth and yield. Numerous studies have demonstrated that air temperature strongly affects plant growth and development. Despite the extensive literature on air temperature, comprehensive studies on the effects of root zone temperature (RZT) on plant growth, elemental composition, and pigments are limited. In this study, we carefully observed the effects of RZT in red leaf lettuce to understand its effect on lettuce growth and pigment content. METHODS: Lettuce (Lactuca sativa, red leaf cultivar 'Red Fire') was grown hydroponically in a plant factory with artificial light under three RZT treatments (15, 25, or 35 °C) for 13 days. We investigated the comprehensive effects of RZT on the production of red leaf lettuce by metabolome and ionome analyses. KEY RESULTS: The 25 °C RZT treatment achieved maximum shoot and root dry weight. The 35 °C RZT decreased plant growth but significantly increased pigment contents (e.g. anthocyanins, carotenoids). In addition, a RZT heating treatment during plant cultivation that changed from 25 to 35 °C RZT for 8 days before harvest significantly increased shoot dry weight compared with the 35 °C RZT and significantly increased pigments compared with the 25 °C RZT. The 15 °C RZT resulted in significantly less pigment content relative to the 35 °C RZT. The 15 °C RZT also resulted in shoot and root dry weights greater than the 35 °C RZT but less than the 25 °C RZT. CONCLUSIONS: This study demonstrated that plant growth and pigments can be enhanced by adjusting RZT during different stages of plant growth to attain enhanced pigment contents while minimizing yield loss. This suggests that controlling RZT could be a viable method to improve lettuce quality via enhancement of pigment content quality while maintaining acceptable yields.


Asunto(s)
Lactuca , Raíces de Plantas , Temperatura , Hidroponía , Antocianinas/farmacología
5.
Plant Cell Rep ; 42(3): 599-607, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36705704

RESUMEN

KEY MESSAGE: By using the organelle glue technique, we artificially manipulated organelle interactions and controlled the plant metabolome at the pathway level. Plant cell metabolic activity changes with fluctuating environmental conditions, in part via adjustments in the arrangement and interaction of organelles. This hints at the potential for designing plants with desirable metabolic activities for food and pharmaceutical industries by artificially controlling the interaction of organelles through genetic modification. We previously developed a method called the organelle glue technique, in which chloroplast-chloroplast adhesion is induced in plant cells using the multimerization properties of split fluorescent proteins. Here, we generated transgenic Arabidopsis (Arabidopsis thaliana) plants in which chloroplasts adhere to each other and performed metabolome analysis to examine the metabolic changes in these lines. In plant cells expressing a construct encoding the red fluorescent protein mCherry targeted to the chloroplast outer envelope by fusion with a signal sequence (cTP-mCherry), chloroplasts adhered to each other and formed chloroplast aggregations. Mitochondria and peroxisomes were embedded in the aggregates, suggesting that normal interactions between chloroplasts and these organelles were also affected. Metabolome analysis of the cTP-mCherry-expressing Arabidopsis shoots revealed significantly higher levels of glycine, serine, and glycerate compared to control plants. Notably, these are photorespiratory metabolites that are normally transported between chloroplasts, mitochondria, and peroxisomes. Together, our data indicate that chloroplast-chloroplast adhesion alters organellar interactions with mitochondria and peroxisomes and disrupts photorespiratory metabolite transport. These results highlight the possibility of controlling plant metabolism at the pathway level by manipulating organelle interactions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Células Vegetales/metabolismo , Cloroplastos/metabolismo , Peroxisomas/metabolismo , Proteínas de Arabidopsis/genética , Metaboloma
6.
Proc Natl Acad Sci U S A ; 117(25): 14552-14560, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513689

RESUMEN

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Producción de Cultivos , Productos Agrícolas/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo/química , Alanina/química , Alanina/metabolismo , Biomasa , Brassica rapa/metabolismo , Colina/química , Colina/metabolismo , Productos Agrícolas/metabolismo , Conjuntos de Datos como Asunto , Redes y Vías Metabólicas/efectos de la radiación , Metabolómica , Microbiota/fisiología , Microbiota/efectos de la radiación , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Rizosfera , Microbiología del Suelo , Luz Solar
7.
Proc Natl Acad Sci U S A ; 117(38): 23970-23981, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32883877

RESUMEN

Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.


Asunto(s)
Frutas , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Carbono/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Sacarosa/metabolismo , Transcriptoma/genética
8.
Plant Mol Biol ; 110(1-2): 131-145, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35729482

RESUMEN

KEY MESSAGE: Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.


Asunto(s)
Arabidopsis , Termotolerancia , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Etanol/farmacología , Putrescina/metabolismo , Respuesta de Proteína Desplegada
9.
Plant Mol Biol ; 109(3): 249-269, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32757126

RESUMEN

KEY MESSAGE: Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Tuberous root formation is a complex process consisting of phase changes as well as cell division and elongation for radial growth. We performed an integrated analysis to clarify the relationships among metabolites, phytohormones, and gene transcription during tuberous root formation in cassava (Manihot esculenta Crantz). We also confirmed the effects of the auxin (AUX), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), gibberellin (GA), brassinosteroid (BR), salicylic acid, and indole-3-acetic acid conjugated with aspartic acid on tuberous root development. An integrated analysis of metabolites and gene expression indicated the expression levels of several genes encoding enzymes involved in starch biosynthesis and sucrose metabolism are up-regulated during tuberous root development, which is consistent with the accumulation of starch, sugar phosphates, and nucleotides. An integrated analysis of phytohormones and gene transcripts revealed a relationship among AUX signaling, CK signaling, and BR signaling, with AUX, CK, and BR inducing tuberous root development. In contrast, ABA and JA inhibited tuberous root development. These phenomena might represent the differences between stem tubers (e.g., potato) and root tubers (e.g., cassava). On the basis of these results, a phytohormonal regulatory model for tuberous root development was constructed. This model may be useful for future phytohormonal studies involving cassava.


Asunto(s)
Manihot , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Manihot/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Almidón/metabolismo
10.
Plant Cell Physiol ; 63(3): 433-440, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-34918130

RESUMEN

The advancement of metabolomics in terms of techniques for measuring small molecules has enabled the rapid detection and quantification of numerous cellular metabolites. Metabolomic data provide new opportunities to gain a deeper understanding of plant metabolism that can improve the health of both plants and humans that consume them. Although major public repositories for general metabolomic data have been established, the community still has shortcomings related to data sharing, especially in terms of data reanalysis, reusability and reproducibility. To address these issues, we developed the RIKEN Plant Metabolome MetaDatabase (RIKEN PMM, http://metabobank.riken.jp/pmm/db/plantMetabolomics), which stores mass spectrometry-based (e.g. gas chromatography-MS-based) metabolite profiling data of plants together with their detailed, structured experimental metadata, including sampling and experimental procedures. Our metadata are described as Linked Open Data based on the Resource Description Framework using standardized and controlled vocabularies, such as the Metabolomics Standards Initiative Ontology, which are to be integrated with various life and biomedical science data using the World Wide Web. RIKEN PMM implements intuitive and interactive operations for plant metabolome data, including raw data (netCDF format), mass spectra (NIST MSP format) and metabolite annotations. The feature is suitable not only for biologists who are interested in metabolomic phenotypes, but also for researchers who would like to investigate life science in general through plant metabolomic approaches.


Asunto(s)
Metaboloma , Metabolómica , Bases de Datos Factuales , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos , Plantas/metabolismo , Reproducibilidad de los Resultados
11.
Plant Cell Physiol ; 63(9): 1181-1192, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36003026

RESUMEN

Water scarcity is a serious agricultural problem causing significant losses to crop yield and product quality. The development of technologies to mitigate the damage caused by drought stress is essential for ensuring a sustainable food supply for the increasing global population. We herein report that the exogenous application of ethanol, an inexpensive and environmentally friendly chemical, significantly enhances drought tolerance in Arabidopsis thaliana, rice and wheat. The transcriptomic analyses of ethanol-treated plants revealed the upregulation of genes related to sucrose and starch metabolism, phenylpropanoids and glucosinolate biosynthesis, while metabolomic analysis showed an increased accumulation of sugars, glucosinolates and drought-tolerance-related amino acids. The phenotyping analysis indicated that drought-induced water loss was delayed in the ethanol-treated plants. Furthermore, ethanol treatment induced stomatal closure, resulting in decreased transpiration rate and increased leaf water contents under drought stress conditions. The ethanol treatment did not enhance drought tolerance in the mutant of ABI1, a negative regulator of abscisic acid (ABA) signaling in Arabidopsis, indicating that ABA signaling contributes to ethanol-mediated drought tolerance. The nuclear magnetic resonance analysis using 13C-labeled ethanol indicated that gluconeogenesis is involved in the accumulation of sugars. The ethanol treatment did not enhance the drought tolerance in the aldehyde dehydrogenase (aldh) triple mutant (aldh2b4/aldh2b7/aldh2c4). These results show that ABA signaling and acetic acid biosynthesis are involved in ethanol-mediated drought tolerance and that chemical priming through ethanol application regulates sugar accumulation and gluconeogenesis, leading to enhanced drought tolerance and sustained plant growth. These findings highlight a new survival strategy for increasing crop production under water-limited conditions.


Asunto(s)
Arabidopsis , Sequías , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Agua/metabolismo
12.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142701

RESUMEN

Fruits of wild tomato species show different ethylene-dependent ripening characteristics, such as variations in fruit color and whether they exhibit a climacteric or nonclimacteric ripening transition. 1-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) are key enzymes in the ethylene biosynthetic pathway encoded by multigene families. Gene duplication is a primary driver of plant diversification and angiosperm evolution. Here, interspecific variations in the molecular regulation of ethylene biosynthesis and perception during fruit ripening in domesticated and wild tomatoes were investigated. Results showed that the activated ACS genes were increased in number in red-ripe tomato fruits than in green-ripe tomato fruits; therefore, elevated dosage of ACS enzyme promoted ripening ethylene production. Results showed that the expression of three ACS isogenes ACS1A, ACS2, and ACS4, which are involved in autocatalytic ethylene production, was higher in red-ripe tomato fruits than in green-ripe tomato fruits. Elevated ACS enzyme dosage promoted ethylene production, which corresponded to the climacteric response of red-ripe tomato fruits. The data suggest that autoinhibitory ethylene production is common to all tomato species, while autocatalytic ethylene production is specific to red-ripe species. The essential regulators Non-ripening (NOR) and Ripening-Inhibitor (RIN) have experienced gene activation and overlapped with increasing ACS enzyme dosage. These complex levels of transcript regulation link higher ethylene production with spatiotemporal modulation of gene expression in red-ripe tomato species. Taken together, this study shows that bursts in ethylene production that accompany fruit color changes in red-ripe tomatoes are likely to be an evolutionary adaptation for seed dispersal.


Asunto(s)
Climaterio , Solanum lycopersicum , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant J ; 103(1): 197-211, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32072682

RESUMEN

Metabolites, phytohormones, and genes involved in dehydration responses/tolerance have been predicted in several plants. However, metabolite/phytohormone-gene regulatory networks in soybean organs under dehydration conditions remain unclear. Here, we analyzed the organ specificity of metabolites, phytohormones, and gene transcripts and revealed the characteristics of their regulatory networks in dehydration-treated soybeans. Our metabolite/phytohormone analysis revealed the accumulation of raffinose, trehalose, and cis-zeatin (cZ) specifically in dehydration-treated roots. In dehydration-treated soybeans, raffinose, and trehalose might have additional roles not directly involved in protecting the photosynthetic apparatus; cZ might contribute to root elongation for water uptake from the moisture region in soil. Our integration analysis of metabolites-genes indicated that galactinol, raffinose, and trehalose levels were correlated with transcript levels for key enzymes (galactinol synthase, raffinose synthase, trehalose 6-phosphate synthase, trehalose 6-phosphate phosphatase) at the level of individual plants but not at the organ level under dehydration. Genes encoding these key enzymes were expressed in mainly the aerial parts of dehydration-treated soybeans. These results suggested that raffinose and trehalose are transported from aerial plant parts to the roots in dehydration-treated soybeans. Our integration analysis of phytohormones-genes indicated that cZ and abscisic acid (ABA) levels were correlated with transcript levels for key enzymes (cytokinin nucleoside 5'-monophosphate phosphoribohydrolase, cytokinin oxidases/dehydrogenases, 9-cis-epoxycarotenoid dioxygenase) at the level of individual plants but not at the organ level under dehydration conditions. Therefore, processes such as ABA and cZ transport, among others, are important for the organ specificity of ABA and cZ production under dehydration conditions.


Asunto(s)
Redes Reguladoras de Genes , Glycine max/genética , Reguladores del Crecimiento de las Plantas/fisiología , Ácido Abscísico/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Rafinosa/metabolismo , Glycine max/metabolismo , Glycine max/fisiología , Transcriptoma , Trehalosa/metabolismo , Zeatina/metabolismo
14.
Plant Physiol ; 182(4): 1894-1909, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32024696

RESUMEN

Nitrogen (N) is an essential macronutrient, and the final form of endogenous inorganic N is ammonium, which is assimilated by Gln synthetase (GS) into Gln. However, how the multiple isoforms of cytosolic GSs contribute to metabolic systems via the regulation of ammonium assimilation remains unclear. In this study, we compared the effects of two rice (Oryza sativa) cytosolic GSs, namely OsGS1;1 and OsGS1;2, on central metabolism in roots using reverse genetics, metabolomic and transcriptomic profiling, and network analyses. We observed (1) abnormal sugar and organic N accumulation and (2) significant up-regulation of genes associated with photosynthesis and chlorophyll biosynthesis in the roots of Osgs1;1 but not Osgs1;2 knockout mutants. Network analysis of the Osgs1;1 mutant suggested that metabolism of Gln was coordinated with the metabolic modules of sugar metabolism, tricarboxylic acid cycle, and carbon fixation. Transcript profiling of Osgs1;1 mutant roots revealed that expression of the rice sigma-factor (OsSIG) genes in the mutants were transiently upregulated. GOLDEN2-LIKE transcription factor-encoding genes, which are involved in chloroplast biogenesis in rice, could not compensate for the lack of OsSIGs in the Osgs1;1 mutant. Microscopic analysis revealed mature chloroplast development in Osgs1;1 roots but not in the roots of Osgs1;2, Osgs1;2-complemented lines, or the wild type. Thus, organic N assimilated by OsGS1;1 affects a broad range of metabolites and transcripts involved in maintaining metabolic homeostasis and plastid development in rice roots, whereas OsGS1;2 has a more specific role, affecting mainly amino acid homeostasis but not carbon metabolism.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Oryza/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/genética , Nitrógeno/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
15.
Dev Biol ; 442(1): 40-52, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30026120

RESUMEN

Plants often display a high competence for regeneration under stress conditions. Signals produced in response to various types of stress serve as critical triggers for de novo organogenesis, but the identity of these signaling molecules underlying cellular reprogramming are largely unknown. We previously identified an AP2/ERF transcription factor, WOUND INDUCED DEDIFFERENTIATION1 (WIND1), as a key regulator involved in wound-induced cellular reprogramming in Arabidopsis. In this study, we found that activation of Arabidopsis WIND1 (AtWIND1) in hypocotyl explants of Brassica napus (B. napus) enhances callus formation and subsequent organ regeneration. Gene expression analyses revealed that AtWIND1 enhances expression of B. napus homologs of ENHANCER OF SHOOT REGENERATION1/DORNRÖSCHEN (ESR1/DRN), which is a direct target of WIND1 in Arabidopsis. Further, time-course hormonal analyses showed that an altered balance of endogenous auxin/cytokinin exists in AtWIND1-activated B. napus explants. Our mass spectrometry analyses, in addition, uncovered dynamic metabolomic reprogramming in AtWIND1-activated explants, including accumulation of several compounds, e.g. proline, gamma aminobutyric acid (GABA), and putrescine, that have historically been utilized as additives to enhance plant cell reprogramming in tissue culture. Our findings thus provide new insights into how WIND1 functions to promote cell reprogramming.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Brassica napus/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Prolina , Putrescina , Regeneración/genética , Factores de Transcripción/metabolismo , Ácido gamma-Aminobutírico
16.
Plant Cell Physiol ; 60(1): 38-51, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30192961

RESUMEN

Parthenocarpy, a process in which fruit set occurs without fertilization, leads to the production of seedless fruit. A number of floral homeotic mutants with abnormal stamen development exhibit parthenocarpic fruit set. Flower development is thought to repress ovary growth before anthesis. However, the mechanism of parthenocarpic fruit development caused by aberrant flower formation is poorly understood. To investigate the molecular mechanism of parthenocarpic fruit development in floral homeotic mutants, we performed functional analysis of Tomato APETALA3 (TAP3) by loss-of-function approaches. Organ-specific promoter was used to induce organ-specific loss of function in stamen and ovary/fruit. We observed increased cell expansion in tap3 mutants and TAP3-RNAi lines during parthenocarpic fruit growth. These were predominantly accompanied by the up-regulation of GA biosynthesis genes, including SlGA20ox1, SlGA20ox2, and SlGA20ox3, as well as reduced expression of the GA-inactivating gene SlGA2ox1 and the auxin signaling gene SlARF7 involved in a crosstalk between GA and auxin. These transcriptional profiles are in agreement with the GA levels in these lines. These results suggest that stamen development negatively regulates fruit set by repressing the GA biosynthesis.


Asunto(s)
Vías Biosintéticas/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Giberelinas/biosíntesis , Partenogénesis/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Regulación hacia Arriba/genética , Secuencia de Bases , Flores/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Mutagénesis/genética , Mutación/genética , Especificidad de Órganos/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Transducción de Señal , Transcripción Genética
17.
Proc Natl Acad Sci U S A ; 113(32): E4610-9, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27450089

RESUMEN

Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops.


Asunto(s)
Fabaceae/microbiología , Mesorhizobium/fisiología , Fosfatos/metabolismo , Simbiosis , Adaptación Fisiológica , Fabaceae/metabolismo , Fosfatos/deficiencia
18.
Plant Cell Physiol ; 59(4): 724-733, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281058

RESUMEN

Most plants show remarkable developmental plasticity in the generation of diverse types of new organs upon external stimuli, allowing them to adapt to their environment. Haustorial formation in parasitic plants is an example of such developmental reprogramming, but its molecular mechanism is largely unknown. In this study, we performed field-omics using transcriptomics and metabolomics to profile the molecular switch occurring in haustorial formation of the root parasitic plant, Thesium chinense, collected from its natural habitat. RNA-sequencing with de novo assembly revealed that the transcripts of very long chain fatty acid (VLCFA) biosynthesis genes, auxin biosynthesis/signaling-related genes and lateral root developmental genes are highly abundant in the haustoria. Gene co-expression network analysis identified a network module linking VLCFAs and the auxin-responsive lateral root development pathway. GC-TOF-MS analysis consistently revealed a unique metabolome profile with many types of fatty acids in the T. chinense root system, including the accumulation of a 25-carbon long chain saturated fatty acid in the haustoria. Our field-omics data provide evidence supporting the hypothesis that the molecular developmental machinery used for lateral root formation in non-parasitic plants has been co-opted into the developmental reprogramming of haustorial formation in the linage of parasitic plants.


Asunto(s)
Perfilación de la Expresión Génica , Metabolómica , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Santalaceae/anatomía & histología , Santalaceae/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Santalaceae/metabolismo , Transcriptoma/genética
19.
Plant Biotechnol J ; 15(11): 1465-1477, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28378532

RESUMEN

Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non-transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequías , Grano Comestible/crecimiento & desarrollo , Galactosiltransferasas/genética , Oryza/genética , Estrés Fisiológico , Proteínas de Arabidopsis/metabolismo , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo , Fotosíntesis , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Plant Physiol ; 170(3): 1445-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26792122

RESUMEN

Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications.


Asunto(s)
Endospermo/metabolismo , Proteínas de la Membrana/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Almidón/metabolismo , Transaminasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Proteínas de Plantas/genética , Plastidios/genética , Plastidios/ultraestructura , Polen/genética , Polen/metabolismo , Homología de Secuencia de Aminoácido , Transaminasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA