Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 578(7794): 251-255, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32015545

RESUMEN

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be1,2 up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 1010 MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1× excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.

2.
J Power Sources ; 527: 1-11, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35582347

RESUMEN

In this study, a novel molybdenum disulfide (MoS2) nano-carbon (NC) coated cathode was developed for hydrogen production in a microbial electrolysis cell (MEC), while treating simulated urine with 2-6 times dilution (conductivity <20 mS cm-1). MoS2 nanoparticles were electrodeposited on the NC coated cathodes at -100, -150 and -200 µA cm-2 and their performances were evaluated in the MEC. The chronopotentiometry (CP) tests showed the improved catalytic activity of MoS2-NC cathodes with much lower cathode overpotential than non-MoS2 coated electrodes. The MoS2-NC200 cathode, electrodeposited at -200 µA cm-2, showed the maximum hydrogen production rate of 0.152 ± 0.002 m3 H2 m-2 d-1 at 0.9V of Eap, which is comparable to the previously reported Pt electrodes. It was found that high solution conductivity over 20 mS cm-1 (>600 mg L-1 NH3-N) can adversely affect the biofilm architecture and the bacterial activity at the anode of the MEC. Exoelectrogenic bacteria for this system at the anode were identified as Tissierella (Clostridia) and Bacteroidetes taxa. Maximum ammonia-nitrogen (NH3-N) and phosphorus (PO4 3--P) removal were 68.7 and 98.6%, respectively. This study showed that the newly fabricated MoS2-NC cathode can be a cost-effective alternative to the Pt cathode for renewable bioelectrochemical hydrogen production from urine.

3.
J Am Chem Soc ; 143(30): 11595-11601, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34269572

RESUMEN

Fine-tuning the exposed active sites of platinum group metal (PGM)-based materials is an efficient way to improve their electrocatalytic performance toward large-scale applications in renewable energy devices such as Zn-air batteries (ZABs). However, traditional synthetic methods trade off durability for the high activity of PGM-based catalysts. Herein, a novel dynamic CO2-bubble template (DCBT) approach was established to electrochemically fine-tuning the exposed Pt active sites in PtFeNi (PFN) porous films (PFs). Particularly, CO2 bubbles were intentionally generated as gas-phase templates by methanol electrooxidation. The generation, adsorption, residing, and desorption of CO2 bubbles on the surface of PFN alloys were explored and controlled by adjusting the frequency of applied triangular-wave voltage. Thereby, the surface morphology and Pt exposure of PFN PFs were controllably regulated by tuning the surface coverage of CO2 bubbles. Consequently, the Pt1.1%Fe8.8%Ni PF with homogeneous nanoporous structure and sufficiently exposed Pt active sites was obtained, showing preeminent activities with a half-wave potential (E1/2) of 0.87 V and onset overpotential (ηonset) of 288 mV at 10 mA cm-2 for oxygen reduction and evolution reactions (ORR and OER), respectively, at an ultralow Pt loading of 0.01 mg cm-2. When tested in ZABs, a high power density of 175.0 mW cm-2 and a narrow voltage gap of 0.64 V were achieved for the long cycling tests over 500 h (750 cycles), indicating that the proposed approach can efficiently improve the activity of PGM catalysts by fine-tuning the microstructure without compromising the durability.

4.
J Power Sources ; 4842021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33627935

RESUMEN

Microbial fuel cells (MFCs) have recently been applied to generate electricity from oily wastewater. Although MFCs that utilize microalgae to provide a self-supporting oxygen (O2) supply at the cathode have been well discussed, those with microalgae at the anode as an active biomass for treating wastewater and producing electrons are still poorly studied and understood. Here, we demonstrated a bilgewater treatment using single- and double-chamber microalgal fuel cells (SMAFC and DMAFC) capable of generating energy with a novel microalgal strain (Chlorella sorokiniana) that was initially isolated from oily wastewater. Compared to previous MFC studies using green algae, relatively high voltage output (151.3-160.1 mV, 71.3-83.4 mV m-2 of power density) was observed in the SMAFC under O2 controlled systems (i.e., acetate addition or light/dark cycle). It was assumed that, under the O2 depletion, alternative electron acceptors such as bicarbonate may be utilized for power generation. A DMAFC showed better power density (up to 23.9%) compared to the SMAFC due to the separated cathode chamber which fully utilizes O2 as an electron acceptor. Both SMAFC and DMAFC removed 67.2-77.4% of soluble chemical oxygen demands (SCOD) from the synthetic bilgewater. This study demonstrates that the application of algae-based MFCs is a feasible strategy to treat oil-in-water emulsion while generating electricity.

5.
Microsc Microanal ; 27(2): 250-256, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33588959

RESUMEN

This in situ transmission electron microscopy work presents a nanoscale characterization of the microstructural evolution in 3D-printed Inconel 718 (IN718) while exposed to elevated temperature and an associated change in the mechanical property under tensile loading. Here, we utilized a specially designed specimen shape that enables tensile testing of nano-sized thin films without off-plane deformations. Additionally, it allows a seamless transition from the in situ heating to tensile experiment using the same specimen, which enables a direct correlation of the microstructure and the mechanical property of the sample. The method was successfully used to observe the residual stress relaxation and the formation of incoherent γ' precipitates when temperature was increased to 700°C. The subsequent in situ tensile test revealed that the exposure of the as-printed IN718 to a high temperature without full heat treatment (solutionizing and double aging) leads to loss of ductility.

6.
Gan To Kagaku Ryoho ; 48(5): 693-695, 2021 May.
Artículo en Japonés | MEDLINE | ID: mdl-34006716

RESUMEN

A 67‒year‒old woman, who had been receiving chemotherapy for 16 years because of recurrences of breast cancer, suffered from arthrosis in the left hip joint. A total hip joint replacement was needed. The central venous catheter port was removed a month before the operation. The culture of the catheter revealed Staphylococcus aureus. During the operation, a gram‒positive coccus was detected in the synovium of the hip joint. Therefore, the replacement was terminated, and an irrigation was performed. Two months later, a replacement of the hip joint was successfully performed after an antibacterial therapy. The patient died of the cancer 1 and a half years later. Septic arthritis secondary to catheter infection is a disease to consider in patients with long‒term chemotherapy.


Asunto(s)
Artritis Infecciosa , Neoplasias de la Mama , Infecciones Estafilocócicas , Anciano , Artritis Infecciosa/tratamiento farmacológico , Artritis Infecciosa/etiología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Articulación de la Cadera , Humanos , Recurrencia Local de Neoplasia , Infecciones Estafilocócicas/tratamiento farmacológico
7.
Gan To Kagaku Ryoho ; 47(12): 1703-1705, 2020 Dec.
Artículo en Japonés | MEDLINE | ID: mdl-33342987

RESUMEN

We experienced a case of right sided accessory breast cancer complicated by contralateral breast cancer. A 50-year-old woman came to us for an examination because a tumor in her left breast was pointed out at breast cancer screening. A breast MRI confirmed a tumor in her left breast and a tumor continuing from the skin to the subcutis of the right axilla. A skin biopsy for the tumor in the right axilla and a core needle biopsy(CNB)for the tumor in the left breast were performed. The pathological result of the CNB for the left breast indicated an invasive ductal carcinoma of the tubular formative scirrhous type. Although the tumor of the right axilla was poorly differentiated adenocarcinoma demonstrating cord-like arrays, it was examined by skin biopsy and therefore no deep part of the tissue was included. We conducted immunostaining, in consideration of the possibility of metastasis from the left sided breast cancer. ER, PgR, mammaglobin, GATA 3 were positive, strongly suggesting that the tumor in the right axilla was also derived from a mammary gland. We also performed a wide local excision of the right axilla plus axillary dissection(level Ⅰ)in addition to conducting a left mastectomy plus sentinel lymph node biopsy, in consideration of the possibility of primary right sided accessory breast cancer. The pathological result following surgery confirmed a difference in the histologic features between both sides, residual normal accessory mammary glands around the tumor on the right side, and the presence of rich DCIS and a lobular replacement image, leading to a definitive diagnosis of primary invasive ductal carcinoma of the accessory breast on the right side.


Asunto(s)
Enfermedades de la Mama , Neoplasias de la Mama , Carcinoma Ductal de Mama , Axila , Neoplasias de la Mama/cirugía , Carcinoma Ductal de Mama/complicaciones , Carcinoma Ductal de Mama/cirugía , Femenino , Humanos , Escisión del Ganglio Linfático , Ganglios Linfáticos , Metástasis Linfática , Mastectomía , Persona de Mediana Edad , Biopsia del Ganglio Linfático Centinela
8.
Nano Lett ; 18(4): 2492-2497, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29489376

RESUMEN

Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. Here, we report in situ experiments to stretch pure aluminum nanotips under O2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can match the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass-glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.

9.
J Am Chem Soc ; 139(51): 18670-18680, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29186955

RESUMEN

Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.

10.
Nano Lett ; 15(2): 1302-8, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25562795

RESUMEN

Dislocations are topological line defects in three-dimensional crystals. Same-sign dislocations repel according to Frank's rule |b1 + b2|(2) > |b1|(2) + |b2|(2). This rule is broken for dislocations in van der Waals (vdW) layers, which possess crystallographic Burgers vector as ordinary dislocations but feature "surface ripples" due to the ease of bending and weak vdW adhesion of the atomic layers. We term these line defects "ripplocations" in accordance to their dual "surface ripple" and "crystallographic dislocation" characters. Unlike conventional ripples on noncrystalline (vacuum, amorphous, or fluid) substrates, ripplocations tend to be very straight, narrow, and crystallographically oriented. The self-energy of surface ripplocations scales sublinearly with |b|, indicating that same-sign ripplocations attract and tend to merge, opposite to conventional dislocations. Using in situ transmission electron microscopy, we directly observed ripplocation generation and motion when few-layer MoS2 films were lithiated or mechanically processed. Being a new subclass of elementary defects, ripplocations are expected to be important in the processing and defect engineering of vdW layers.

11.
Nano Lett ; 15(12): 8260-5, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26535921

RESUMEN

Liquid-cell in situ transmission electron microscopy (TEM) observations of the charge/discharge reactions of nonaqueous Li-oxygen battery cathode were performed with ∼5 nm spatial resolution. The discharging reaction occurred at the interface between the electrolyte and the reaction product, whereas in charging, the reactant was decomposed at the contact with the gold current collector, indicating that the lithium ion diffusivity/electronic conductivity is the limiting factor in discharging/charging, respectively, which is a root cause for the asymmetry in discharging/charging overpotential. Detachments of lithium oxide particles from the current collector into the liquid electrolyte are frequently seen when the cell was discharged at high overpotentials, with loss of active materials into liquid electrolyte ("flotsam") under minute liquid flow agitation, as the lithium peroxide dendritic trees are shown to be fragile mechanically and electrically. Our result implies that enhancing the binding force between the reaction products and the current collector to maintain robust electronic conduction is a key for improving the battery performance. This work demonstrated for the first time the in situ TEM observation of a three-phase-reaction involving gold electrode, lithium oxides, DMSO electrolyte and lithium salt, and O2 gas. The technique described in this work is not limited to Li-oxygen battery but also can be potentially used in other applications involving gas/liquid/solid electrochemical reactions.

12.
Nano Lett ; 15(3): 1796-802, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25633221

RESUMEN

Lithium sulfide (Li2S) is a promising cathode material for Li-S batteries with high capacity (theoretically 1166 mAh g(-1)) and can be paired with nonlithium-metal anodes to avoid potential safety issues. However, the cycle life of coarse Li2S particles suffers from poor electronic conductivity and polysulfide shuttling. Here, we develop a flexible slurryless nano-Li2S/reduced graphene oxide cathode paper (nano-Li2S/rGO paper) by simple drop-coating. The Li2S/rGO paper can be directly used as a free-standing and binder-free cathode without metal substrate, which leads to significant weight savings. It shows excellent rate capability (up to 7 C) and cycle life in coin cell tests due to the high electron conductivity, flexibility, and strong solvent absorbency of rGO paper. The Li2S particles that precipitate out of the solvent on rGO have diameters 25-50 nm, which is in contrast to the 3-5 µm coarse Li2S particles without rGO.

13.
Nano Lett ; 14(7): 4005-10, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24823479

RESUMEN

Nanostructured LiFePO4 (LFP) electrodes have attracted great interest in the Li-ion battery field. Recently there have been debates on the presence and role of metastable phases during lithiation/delithiation, originating from the apparent high rate capability of LFP batteries despite poor electronic/ionic conductivities of bulk LFP and FePO4 (FP) phases. Here we report a potentiostatic in situ transmission electron microscopy (TEM) study of LFP electrode kinetics during delithiation. Using in situ high-resolution TEM, a Li-sublattice disordered solid solution zone (SSZ) is observed to form quickly and reach 10-25 nm × 20-40 nm in size, different from the sharp LFP|FP interface observed under other conditions. This 20 nm scale SSZ is quite stable and persists for hundreds of seconds at room temperature during our experiments. In contrast to the nanoscopically sharp LFP|FP interface, the wider SSZ seen here contains no dislocations, so reduced fatigue and enhanced cycle life can be expected along with enhanced rate capability. Our findings suggest that the disordered SSZ could dominate phase transformation behavior at nonequilibrium condition when high current/voltage is applied; for larger particles, the SSZ could still be important as it provides out-of-equilibrium but atomically wide avenues for Li(+)/e(-) transport.

14.
Nano Lett ; 13(11): 5203-11, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24079296

RESUMEN

Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515 - 1520). Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles dispersed in Na2O matrix. With further Na insertion, the NaxSn crystallized into Na15Sn4 (x = 3.75). Upon extraction of Na (desodiation), the NaxSn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na2O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO2. DFT calculations indicate that Na(+) diffuses 30 times slower than Li(+) in SnO2, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2 significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

15.
Small Methods ; : e2301582, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697918

RESUMEN

This work presents quantitative investigations into the relationships between lithium dendrite growth in the defects of Li6PS5Cl (LPSCl) solid electrolyte (SE), crack nucleation and propagation in the SE, and the associated mechanical forces driving these dendrites and cracks. Two different growth modes for lithium dendrites are identified by ex situ scanning electron microscopy (SEM) observation: longitudinal cracking inside pores in the SE and lateral penetration along boundaries of the SE particles. These in situ TEM tests reveal that concentrated Li plating in a nano-sized defect on the LPSCl surface will lead to the nucleation and propagation of cracks into the LPSCl under a stress much smaller than the expected mechanical strength of the LPSCl material. This unexpected mechanical degradation is caused by a reduction in the mechanical strength of LPSCl during electrochemical charge/discharge cycling, resulting from a disorder in the crystal structure of LPSCl as revealed by DFT simulations. Due to this mechanical degradation of LPSCl, the threshold force necessary to initiate crack growth is much lower than the previously expected force to drive dendrite growth.

16.
ACS Nano ; 18(6): 4811-4821, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38306703

RESUMEN

Layered Ta2M3Te5 (M = Pd, Ni) has emerged as a platform to study 2D topological insulators, which have exotic properties such as spin-momentum locking and the presence of Dirac fermions for use in conventional and quantum-based electronics. In particular, Ta2Ni3Te5 has been shown to have superconductivity under pressure and is predicted to have second-order topology. Despite being an interesting material with fascinating physics, the detailed crystalline and phononic properties of this material are still unknown. In this study, we use transmission electron microscopy (TEM) and polarized Raman spectroscopy (PRS) to reveal the anisotropic properties of exfoliated few-layer Ta2Ni3Te5. An electron diffraction and TEM study reveals structural anisotropy in the material, with a preferential crystal orientation along the [010] direction. Through Raman spectroscopy, we discovered 15 vibrational modes, 3 of which are ultralow-frequency modes, which show anisotropic response with sample orientation varying with the polarization of the incident beam. Using angle-resolved PRS, we assigned the vibrational symmetries of 11 modes to Ag and two modes to B3g. We also found that linear dichroism plays a role in understanding the Raman signature of this material, which requires the use of complex elements in the Raman tensors. The anisotropy of the Raman scattering also depends on the excitation energies. Our observations reveal the anisotropic nature of Ta2Ni3Te5, establish a quick and nondestructive Raman fingerprint for determining sample orientation, and represent a significant advance in the fundamental understanding of the two-dimensional topological insulator (2DTI) Ta2Ni3Te5 material.

17.
Gan To Kagaku Ryoho ; 40(5): 639-42, 2013 May.
Artículo en Japonés | MEDLINE | ID: mdl-23863590

RESUMEN

A 62-year-old man with pancreatic body cancer underwent distal pancreatectomy without adjuvant gemcitabine(GEM). Because the pancreatic cancer recurred 4 months after surgery, however, he was treated with combination chemotherapy(S- 1+GEM at 750mg/m2). Unfortunately, this combination regimen was ineffective; therefore S-1 was withdrawn and full-dose GEM was administered as second-line treatment. One year of full-dose GEM showed a significant clinical benefit, completely eliminating multiple pulmonary metastases even after a 3-month suspension of chemotherapy. Our findings suggest that GEM monotherapy is a useful mainstream treatment for advanced pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Combinación de Medicamentos , Humanos , Masculino , Persona de Mediana Edad , Ácido Oxónico/administración & dosificación , Pancreatectomía , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , Tegafur/administración & dosificación , Tomografía Computarizada por Rayos X , Gemcitabina
18.
Proc Natl Acad Sci U S A ; 106(38): 16102-7, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19805265

RESUMEN

Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this "liquid stone" gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm(3)) by neutron scattering measurements, there is new urgency to the challenge of explaining these essential properties. Here we propose a molecular model of C-S-H based on a bottom-up atomistic simulation approach that considers only the chemical specificity of the system as the overriding constraint. By allowing for short silica chains distributed as monomers, dimers, and pentamers, this C-S-H archetype of a molecular description of interacting CaO, SiO2, and H2O units provides not only realistic values of the C/S ratio and the density computed by grand canonical Monte Carlo simulation of water adsorption at 300 K. The model, with a chemical composition of (CaO)(1.65)(SiO2)(H2O)(1.75), also predicts other essential structural features and fundamental physical properties amenable to experimental validation, which suggest that the C-S-H gel structure includes both glass-like short-range order and crystalline features of the mineral tobermorite. Additionally, we probe the mechanical stiffness, strength, and hydrolytic shear response of our molecular model, as compared to experimentally measured properties of C-S-H. The latter results illustrate the prospect of treating cement on equal footing with metals and ceramics in the current application of mechanism-based models and multiscale simulations to study inelastic deformation and cracking.


Asunto(s)
Compuestos de Calcio/química , Modelos Moleculares , Óxidos/química , Dióxido de Silicio/química , Agua/química , Adsorción , Algoritmos , Simulación por Computador , Elasticidad , Microscopía Electrónica de Transmisión , Método de Montecarlo , Tamaño de la Partícula , Reproducibilidad de los Resultados , Termodinámica , Difracción de Rayos X
19.
Nano Lett ; 11(11): 4535-41, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21942500

RESUMEN

The lithiation reaction of single ZnO nanowire (NW) electrode in a Li-ion nanobattery configuration was observed by in situ transmission electron microscopy. Upon first charge, the single-crystalline NW was transformed into a nanoglass with multiple glassy nanodomains (Gleiter, H. MRS Bulletin2009, 34, 456) by an intriguing reaction mechanism. First, partial lithiation of crystalline NW induced multiple nanocracks ∼70 nm ahead of the main lithiation front, which traversed the NW cross-section and divided the NW into multiple segments. This was followed by rapid surface diffusion of Li(+) and solid-state amorphization along the open crack surfaces. Finally the crack surfaces merged, leaving behind a glass-glass interface (GGI). Such reaction front instability also repeated in the interior of each divided segment, further subdividing the NW into different nanoglass domains (nanoamorphization). Instead of the profuse dislocation plasticity seen in SnO(2) NWs (Science2010, 330, 1515), no dislocation was seen and the aforementioned nanocracking was the main precursor to the electrochemically driven solid-state amorphization in ZnO. Ab initio tensile decohesion calculations verified dramatic lithium embrittlement effect in ZnO, but not in SnO(2). This is attributed to the aliovalency of Sn cation (Sn(IV), Sn(II)) in contrast to the electronically more rigid Zn(II) cation.


Asunto(s)
Suministros de Energía Eléctrica , Instalación Eléctrica , Electroquímica/métodos , Litio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotubos/química , Óxido de Zinc/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Nano Lett ; 11(8): 3312-8, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21707052

RESUMEN

We report direct observation of an unexpected anisotropic swelling of Si nanowires during lithiation against either a solid electrolyte with a lithium counter-electrode or a liquid electrolyte with a LiCoO(2) counter-electrode. Such anisotropic expansion is attributed to the interfacial processes of accommodating large volumetric strains at the lithiation reaction front that depend sensitively on the crystallographic orientation. This anisotropic swelling results in lithiated Si nanowires with a remarkable dumbbell-shaped cross section, which develops due to plastic flow and an ensuing necking instability that is induced by the tensile hoop stress buildup in the lithiated shell. The plasticity-driven morphological instabilities often lead to fracture in lithiated nanowires, now captured in video. These results provide important insight into the battery degradation mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA