RESUMEN
Adipose tissue remodeling and plasticity are dynamically regulated by the coordinated functions of adipocytes, macrophages, and endothelial cells and extracellular matrix (ECM) that provides stiffness networks in adipose tissue component cells. Inflammation and fibrosis are crucial exogenous factors that dysregulate adipose tissue functions and drastically change the mechanical properties of the ECM. Therefore, communication among the ECM and adipose tissue component cells is necessary to understand the multifaceted functions of adipose tissues. To obtain in vivo stiffness, we used genipin as a crosslinker for collagen gels. Meanwhile, we isolated primary adipocytes, macrophages, and endothelial cells from C57BL/6J mice and incubated these cells in the differentiation media on temperature-responsive culture dishes. After the differentiation, these cell sheets were transferred onto genipin-crosslinked collagen gels with varying matrix stiffness. We found that inflammatory gene expressions were induced by hard matrix, whereas antiinflammatory gene expressions were promoted by soft matrix in all three types of cells. Interestingly, the coculture experiments of adipocytes, macrophages, and endothelial cells showed that the effects of soft or hard matrix stiffness stimulation on adipocytes were transmitted to the distant adipose tissue component cells, altering their gene expression profiles under normal matrix conditions. Finally, we identified that a hard matrix induces the secretion of CXCL13 from adipocytes, and CXCL13 is one of the important transmitters for stiffness communication with macrophages and endothelial cells. These findings provide insight into the mechanotransmission into distant cells and the application of stiffness control for chronic inflammation in adipose tissues with metabolic dysregulation.
Asunto(s)
Adipocitos , Quimiocina CXCL13 , Células Endoteliales , Matriz Extracelular , Macrófagos , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Adipocitos/metabolismo , Adipocitos/citología , Comunicación Celular , Quimiocina CXCL13/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Macrófagos/citologíaRESUMEN
Lactate serves as the major glucose alternative to an energy substrate in the brain. Lactate level is increased in the fetal brain from the middle stage of gestation, indicating the involvement of lactate in brain development and neuronal differentiation. Recent reports show that lactate functions as a signaling molecule to regulate gene expression and protein stability. However, the roles of lactate signaling in neuronal cells remain unknown. Here, we showed that lactate promotes the all stages of neuronal differentiation of SH-SY5Y and Neuro2A, human and mouse neuroblastoma cell lines, characterized by increased neuronal marker expression and the rates of neurites extension. Transcriptomics revealed many lactate-responsive genes sets such as SPARCL1 in SH-SY5Y, Neuro2A, and primary embryonic mouse neuronal cells. The effects of lactate on neuronal function were mainly mediated through monocarboxylate transporters 1 (MCT1). We found that NDRG family member 3 (NDRG3), a lactate-binding protein, was highly expressed and stabilized by lactate treatment during neuronal differentiation. Combinative RNA-seq of SH-SY5Y with lactate treatment and NDRG3 knockdown shows that the promotive effects of lactate on neural differentiation are regulated through NDRG3-dependent and independent manners. Moreover, we identified TEA domain family member 1 (TEAD1) and ETS-related transcription factor 4 (ELF4) are the specific transcription factors that are regulated by both lactate and NDRG3 in neuronal differentiation. TEAD1 and ELF4 differently affect the expression of neuronal marker genes in SH-SY5Y cells. These results highlight the biological roles of extracellular and intracellular lactate as a critical signaling molecule that modifies neuronal differentiation.
Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Ácido Láctico , Neuronas , Animales , Humanos , Ratones , Diferenciación Celular/fisiología , Línea Celular , Regulación de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Neuroblastoma/genética , Neuronas/citología , Neuronas/metabolismo , Transducción de SeñalRESUMEN
Bone morphogenic protein 9 (BMP9) is one of the most potent inducers of osteogenic differentiation among the 14 BMP members, but its mechanism of action has not been fully demonstrated. Hes1 is a transcriptional regulator with basic helix-loop-helix (bHLH) domain and is a well-known Notch effector. In this study, we investigated the functional roles of early induction of Hes1 by BMP9 in a mouse mesenchymal stem cell line, ST2. Hes1 mRNA was transiently and periodically induced by BMP9 in ST2, which was inhibited by BMP signal inhibitors but not by Notch inhibitor. Interestingly, Hes1 knockdown in ST2 by siRNA increased the expression of osteogenic differentiation markers such as Sp7 and Ibsp and matrix mineralization in comparison with control siRNA transfected ST2. In contrast, forced expression of Hes1 by using the Tet-On system suppressed the expression of osteogenic markers and matrix mineralization by BMP9. We also found that the early induction of Hes1 by BMP9 suppressed the expression of Alk1, an essential receptor for BMP9. In conclusion, BMP9 rapidly induces the expression of Hes1 via the SMAD pathway in ST2 cells, which plays a negative regulatory role in osteogenic differentiation of mesenchymal stem cells induced by BMP9.
Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Células Madre Mesenquimatosas , Animales , Ratones , Diferenciación Celular/genética , Factor 2 de Diferenciación de Crecimiento/genética , Factor 2 de Diferenciación de Crecimiento/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismoRESUMEN
OBJECTIVES: To evaluate the effectiveness of combined aerobic and resistance exercise on cognition, metabolic health, physical function, and health-related quality of life (HRQoL) in middle-aged and older adults with type 2 diabetes mellitus (T2DM). DATA SOURCE AND STUDY SELECTION: Systematic search of CINAHL, Cochrane, EMBASE, Scopus, PubMed, ProQuest Dissertation and Thesis, PsycINFO, Web of Science databases, and gray literature from Google Scholar. Pertinent randomized controlled trials (RCTs) were selected. The Protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO CRD42023387336). DATA EXTRACTION: The risk of bias was evaluated using the Cochrane Risk of Bias tool by 2 reviewers independently. Outcome data were extracted in a fixed-effect model if heterogeneity test were not significant and I2≤50%; otherwise, the random-effects model was used. DATA SYNTHESIS: Sixteen studies with 2426 participants were included in this review. Combined aerobic and resistance exercise had significant positive effects on cognition (SMD=0.34, 95% CI: 0.13 to 0.55), metabolic health on HbA1c (SMD=-0.35, 95% CI: -0.48 to -0.22) and lipid profile (total cholesterol SMD=-0.20, 95% CI: -0.34 to -0.07; low-density lipoprotein SMD=-0.19, 95% CI: -0.33 to -0.05; high-density lipoprotein SMD=0.25, 95% CI: 0.12 to 0.39; and triglycerides SMD=-0.18, 95% CI: -0.31 to -0.04), physical function on aerobic oxygen uptake (SMD=0.58, 95% CI: 0.21 to 0.95) and body mass index (MD=-1.33, 95% CI: -1.84 to -0.82), and physical HRQoL (MD=4.17, 95% CI: 0.86 to 7.48). Our results showed that clinically important effects on cognition may occur in combining the low-moderate intensity of aerobic exercise and progressive intensity of resistance training, the total duration of the exercise needs to be at least 135 minutes per week, among which, resistance training should be at least 60 minutes. CONCLUSION: Combined aerobic and resistance exercise effectively improves cognition, ameliorates metabolic health, enhances physical function, and increases physical HRQoL in middle-aged and older adults with T2DM. More RCTs and longitudinal follow-ups are required to provide future evidence of structured combined aerobic and resistance exercise on other domains of cognition.
RESUMEN
Bone homeostasis is regulated by bone morphogenic proteins (BMPs), among which BMP9 is one of the most osteogenic. Here, we have found that BMP9 rapidly increases the protein expression of hypoxia-inducible factor-1α (HIF-1α) in osteoblasts under normoxic conditions more efficiently than BMP2 or BMP4. A combination of BMP9 and hypoxia further increased HIF-1α protein expression. HIF-1α protein induction by BMP9 is not accompanied by messenger RNA (mRNA) increase and is inhibited by the activation of prolyl hydroxylase domain (PHD)-containing protein, indicating that BMP9 induces HIF-1α protein expression by inhibiting PHD-mediated protein degradation. BMP9-induced HIF-1α protein increase was abrogated by inhibitors of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) kinase, indicating that it is mediated by PI3K-AKT signaling pathway. BMP9 increased mRNA expression of pyruvate dehydrogenase kinase 1 (PDK1), a glycolytic enzyme, and vascular endothelial growth factor-A (VEGF-A), an angiogenic factor, in osteoblasts. Notably, BMP9-induced mRNA expression of PDK1, but not that of VEGF-A, was significantly inhibited by small interference RNA-mediated knockdown of Hif-1α. BMP9-induced matrix mineralization and osteogenic marker gene expressions were significantly inhibited by chemical inhibition and gene knockdown of either Hif-1α or Pdk-1, respectively. Since increased glycolysis is an essential feature of differentiated osteoblasts, our findings indicate that HIF-1α expression is important in BMP9-mediated osteoblast differentiation through the induction of PDK1.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The glycolytic system is selected for ATP synthesis not only in tumor cells but also in differentiated cells. Differentiated osteoblasts also switch the dominant metabolic pathway to aerobic glycolysis. We found that primary osteoblasts increased expressions of glycolysis-related enzymes such as Glut1, hexokinase 1 and 2, lactate dehydrogenase A and pyruvate kinase M2 during their differentiation. Osteoblast differentiation decreased expression of tumor suppressor p53, which negatively regulates Glut1 expression, and enhanced phosphorylation of AKT, which is regulated by phosphoinositol-3 kinase (PI3K). An inhibitor of PI3K enhanced p53 expression and repressed Glut1 expression. Luciferase reporter assay showed that p53 negatively regulated transcriptional activity of solute carrier family 2 member 1 gene promoter region. Inhibition of glycolysis in osteoblasts reduced ATP contents more significantly than inhibition of oxidative phosphorylation by carbonyl cyanide m-chlorophenyl hydrazine. These results have indicated that osteoblasts increase Glut1 expression through the down-regulation of p53 to switch their metabolic pathway to glycolysis during differentiation.
Asunto(s)
Transportador de Glucosa de Tipo 1 , Glucólisis , Osteoblastos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diferenciación Celular , Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Osteoblastos/citología , Fosforilación OxidativaRESUMEN
Osteoblasts are versatile cells involved in multiple whole-body processes, including bone formation and immune response. Secretory amounts and patterns of osteoblast-derived proteins such as osteopontin (OPN) and osteocalcin (OCN) modulate osteoblast function. However, the regulatory mechanism of OPN and OCN expression remains unknown. Here, we demonstrate that p54/p46 c-jun N-terminal kinase (JNK) inhibition suppresses matrix mineralization and OCN expression but increases OPN expression in MC3T3-E1 cells and primary osteoblasts treated with differentiation inducers, including ascorbic acid, bone morphogenic protein-2, or fibroblast growth factor 2. Preinhibition of JNK before the onset of differentiation increased the number of osteoblasts that highly express OPN but not OCN (OPN-OBs), indicating that JNK affects OPN secretory phenotype at the early stage of osteogenic differentiation. Additionally, we identified JNK2 isoform as being critically involved in OPN-OB differentiation. Microarray analysis revealed that OPN-OBs express characteristic transcription factors, cell surface markers, and cytokines, including glycoprotein hormone α2 and endothelial cell-specific molecule 1. Moreover, we found that inhibitor of DNA binding 4 is an important regulator of OPN-OB differentiation and that dual-specificity phosphatase 16, a JNK-specific phosphatase, functions as an endogenous regulator of OPN-OB induction. OPN-OB phenotype was also observed following LPS from Porphyromonas gingivalis stimulation during osteogenic differentiation. Collectively, these results suggest that the JNK-Id4 signaling axis is crucial in the control of OPN and OCN expression during osteoblastic differentiation.-Kusuyama, J., Amir, M. S., Albertson, B. G., Bandow, K., Ohnishi, T., Nakamura, T., Noguchi, K., Shima, K., Semba, I., Matsuguchi, T. JNK inactivation suppresses osteogenic differentiation, but robustly induces osteopontin expression in osteoblasts through the induction of inhibitor of DNA binding 4 (Id4).
Asunto(s)
Proteínas Inhibidoras de la Diferenciación/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Osteoblastos/metabolismo , Osteogénesis/fisiología , Osteopontina/biosíntesis , Animales , Células Cultivadas , Fosfatasas de Especificidad Dual/deficiencia , Fosfatasas de Especificidad Dual/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 9 Activada por Mitógenos/fisiología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/deficiencia , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/fisiología , Osteocalcina/biosíntesis , Osteocalcina/genética , Osteogénesis/efectos de los fármacos , Osteopontina/genética , Isoformas de Proteínas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacologíaRESUMEN
Bone morphogenetic protein (BMP)9 has been reported to be the most potent BMP to induce bone formation. However, the details of BMP9-transduced intracellular signaling remain ambiguous. Here, we have investigated signal transduction mechanisms of BMP9 in comparison to BMP2, another potent inducer of bone formation, in osteoblasts. In a mouse osteoblast cell line, BMP9 induced higher mRNA levels of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2) than BMP2 within 2 h. Unlike BMP2, BMP9 induced rapid phosphorylation of glycogen synthase kinase 3-ß (GSK3-ß) and protein kinase B (Akt) and increased the cellular protein content of ß-catenin. BMP9 moderately increased mRNA levels of several canonical Wingless-related integration site to lower degrees than BMP2. Furthermore, BMP9-induced GSK3-ß phosphorylation was not inhibited by pretreatment with actinomycin D, cycloheximide, or Brefeldin A, indicating it is independent of Wnt protein secretion. BMP9-induced GSK3-ß phosphorylation was abrogated by Akt or class I PI3K-specific inhibitors. Moreover, inactivation of GSK3-ß by LiCl did not further promote ALP and Runx2 mRNA induction by BMP9 as significantly as that by BMP2. Notably, BMP9-induced GSK3-ß phosphorylation was inhibited by small interfering RNA against endoglin and GIPC PDZ domain-containing family, member 1. Taken together, our present findings have indicated that BMP9 directly activates GSK3ß-ß-catenin signaling pathway through class I PI3K-Akt Axis in osteoblasts, which may be essential for the potent osteoinductive activity of BMP9.-Eiraku, N., Chiba, N., Nakamura, T., Amir, M. S., Seong, C.-H., Ohnishi, T., Kusuyama, J., Noguchi, K., Matsuguchi, T. BMP9 directly induces rapid GSK3-ß phosphorylation in a Wnt-independent manner through class I PI3K-Akt axis in osteoblasts.
Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor 2 de Diferenciación de Crecimiento/farmacología , Osteoblastos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Wnt/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Proteína Morfogenética Ósea 2/farmacología , Línea Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Endoglina/genética , Endoglina/metabolismo , Inhibidores Enzimáticos , Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Cloruro de Litio/farmacología , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
Hypoxia in adipose tissue is regarded as a trigger that induces dysregulation of the secretory profile in adipocytes. Similarly, local dysregulation of adipocytokine secretion is an initial event in the deleterious effects of obesity on metabolism. We previously reported that CXCL13 is highly produced during adipogenesis, however little is known about the roles of CXCL13 in adipocytes. Here, we found that hypoxia, as modeled by 1% O2 or exposure to the hypoxia-mimetic reagent desferrioxamine (DFO) has strong inductive effects on the expression of CXCL13 and CXCR5, a CXCL13 receptor, in both undifferentiated and differentiated adipocytes and in organ-cultured white adipose tissue (WAT). CXCL13 was also highly expressed in WAT from high fat diet-fed mice. Hypoxic profile, typified by increased expression of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) and decreased expression of adiponectin, was significantly induced by CXCL13 treatment during adipogenic differentiation. Conversely, the treatment of adipocytes with a neutralizing-antibody against CXCL13 as well as CXCR5 knockdown by specific siRNA effectively inhibited DFO-induced inflammation. The phosphorylation of Akt2, a protective factor of adipose inflammation, was significantly inhibited by CXCL13 treatment during adipogenic differentiation. Mechanistically, CXCL13 induces the expression of PHLPP1, an Akt2 phosphatase, through focal adhesion kinase (FAK) signaling; and correspondingly we show that CXCL13 and DFO-induced IL-6 and PAI-1 expression was blocked by Phlpp1 knockdown. Furthermore, we revealed the functional binding sites of PPARγ2 and HIF1-α within the Cxcl13 promoter. Taken together, these results indicate that CXCL13 is an adipocytokine that facilitates hypoxia-induced inflammation in adipocytes through FAK-mediated induction of PHLPP1 in autocrine and/or paracrine manner.
Asunto(s)
Adipocitos/inmunología , Adipogénesis , Adipoquinas/inmunología , Quimiocina CXCL13/inmunología , Hipoxia/inmunología , Fosfoproteínas Fosfatasas/inmunología , Células 3T3-L1 , Adipocitos/citología , Adipoquinas/genética , Adiponectina/genética , Adiponectina/inmunología , Animales , Quimiocina CXCL13/genética , Humanos , Hipoxia/genética , Hipoxia/fisiopatología , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma/genética , PPAR gamma/inmunología , Fosfoproteínas Fosfatasas/genéticaRESUMEN
Periodontal ligament fibroblasts (PDLFs) have osteogenic capacity, producing bone matrix proteins. Application of bone morphogenic proteins (BMPs) to PDLFs is a promising approach for periodontal regeneration. However, in chronic bone metabolic disorders, such as periodontitis, proper control of accompanying inflammation is essential for optimizing the effects of BMPs on PDLFs. We have previously shown that low-intensity pulsed ultrasound (LIPUS), a medical technology that induces mechanical stress using sound waves, significantly promotes osteogenesis in mesenchymal stem cells. Here, we demonstrate that LIPUS promotes the BMP9-induced osteogenic differentiation of PDLFs. In contrast, BMP2-induced osteogenic differentiation was not altered by LIPUS, probably due to the LIPUS-induced secretion of Noggin, a BMP2 antagonist, from PDLFs. To examine if LIPUS affects inflammatory responses of PDLFs to lipopolysaccharide (LPS) derived from Porphyromonas gingivalis (LPS-PG), we also simultaneously treated PDLFs with LIPUS and LPS-PG. Treatment with LIPUS significantly inhibited the phosphorylation of ERKs, TANK-binding kinase 1, and interferon regulatory factor 3 in LPS-PG-stimulated PDLFs, in addition to inhibiting the degradation of IκB. Furthermore, LIPUS treatment reduced messenger RNA (mRNA) expression of interleukin-1alpha (IL-1alpha), IL-1beta, IL-6, IL-8, C-C motif chemokine ligand 2, C-X-C motif chemokine ligand 1 (CXCL1), CXCL10 and receptor activator of nuclear factor kappa-B ligand, and also diminished IL-1ß and tumor necrosis factor a (TNFa)-induced inflammatory reactions. Phosphorylation of Rho-associated kinase 1 (ROCK1) was induced by LIPUS, while ROCK1-specific inhibitor prevented the promotive effects of LIPUS on p38 phosphorylation, mRNA expression of CXCL1 and Noggin, and osteogenesis. The suppressive effects of LIPUS on LPS-PG-stimulated inflammatory reactions were also prevented by ROCK1 inhibition. Moreover, LIPUS treatment blocked inhibitory effects of LPS-PG and IL-1ß on osteogenesis. These results indicate that LIPUS suppresses inflammatory effects of LPS-PG, IL-1ß, and TNFa and also promotes BMP9-induced osteogenesis through ROCK1 in PDLFs.
Asunto(s)
Fibroblastos/citología , Factor 2 de Diferenciación de Crecimiento/metabolismo , Mediadores de Inflamación/farmacología , Osteogénesis , Ligamento Periodontal/citología , Ondas Ultrasónicas , Quinasas Asociadas a rho/metabolismo , Diferenciación Celular , Células Cultivadas , Citocinas/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Factor 2 de Diferenciación de Crecimiento/genética , Humanos , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/efectos de la radiación , Factor de Necrosis Tumoral alfa/farmacología , Quinasas Asociadas a rho/genéticaRESUMEN
Bone marrow stromal cells (BMSCs) are multipotent cells that can differentiate into adipocytes and osteoblasts. Inadequate BMSC differentiation is occasionally implicated in chronic bone metabolic disorders. However, specific signaling pathways directing BMSC differentiation have not been elucidated. Here, we explored the roles of spleen tyrosine kinase (Syk) in BMSC differentiation into adipocytes and osteoblasts. We found that Syk phosphorylation was increased in the early stage, whereas its protein expression was gradually decreased during the adipogenic and osteogenic differentiation of two mouse mesenchymal stromal cell lines, ST2 and 10T(1/2), and a human BMSC line, UE6E-7-16. Syk inactivation with either a pharmacological inhibitor or Syk-specific siRNA suppressed adipogenic differentiation, characterized by decreased lipid droplet appearance and the gene expression of fatty acid protein 4 (Fabp4), peroxisome proliferator-activated receptor γ2 (Pparg2), CCAAT/enhancer binding proteins α (C/EBPα), and C/EBPß. In contrast, Syk inhibition promoted osteogenic differentiation, represented by increase in matrix mineralization and alkaline phosphatase (ALP) activity, as well as the expression levels of osteocalcin, runt-related transcription factor 2 (Runx2), and distal-less homeobox 5 (Dlx5) mRNAs. We also found that Syk-induced signals are mediated by phospholipase C γ1 (PLCγ1) in osteogenesis and PLCγ2 in adipogenesis. Notably, Syk-activated PLCγ2 signaling was partly modulated through B-cell linker protein (BLNK) in adipogenic differentiation. On the other hand, growth factor receptor-binding protein 2 (Grb2) was involved in Syk-PLCγ1 axis in osteogenic differentiation. Taken together, these results indicate that Syk-PLCγ signaling has a dual role in regulating the initial stage of adipogenic and osteogenic differentiation of BMSCs.
Asunto(s)
Adipocitos/enzimología , Adipogénesis , Linaje de la Célula , Células Madre Mesenquimatosas/enzimología , Osteoblastos/enzimología , Osteogénesis , Fosfolipasa C gamma/metabolismo , Quinasa Syk/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones Endogámicos C3H , Fenotipo , Fosfolipasa C gamma/genética , Fosforilación , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Quinasa Syk/genética , Factores de Tiempo , TransfecciónRESUMEN
Adipogenic differentiation plays a vital role in energy homeostasis and endocrine system. Several transcription factors, including peroxisome proliferator-activated receptor gamma 2 and CCAAT-enhancer-binding protein (C/EBP) α, ß, and δ, are important for the process, whereas the stage-specific intracellular signal transduction regulating the onset of adipogenesis remains enigmatic. Here, we explored the functional role of c-jun N-terminal kinases (JNKs) in adipogenic differentiation using in vitro differentiation models of 3T3-L1 cells and primary adipo-progenitor cells. JNK inactivation with either a pharmacological inhibitor or JNK2-specific siRNA suppressed adipogenic differentiation, characterized by decreased lipid droplet appearance and the down-regulation of Adiponectin, fatty acid protein 4 (Fabp4), Pparg2, and C/ebpa expressions. Conversely, increased adipogenesis was observed by the inducible overexpression of p46JNK2 (JNK2-1), whereas it was not observed by that of p54JNK2 (JNK2-2), indicating a distinct role of p46JNK2. The essential role of JNK appears restricted to the early stage of adipogenic differentiation, as JNK inhibition in the later stages did not influence adipogenesis. Indeed, JNK phosphorylation was significantly induced at the onset of adipogenic differentiation. As for the transcription factors involved in early adipogenesis, JNK inactivation significantly inhibited the induction of C/ebpd, but not C/ebpb, during the initial stage of adipogenic differentiation. JNK activation increased C/ebpd mRNA and protein expression through the induction and phosphorylation of activating transcription factor 2 (ATF2) that binds to a responsive element within the C/ebpd gene promoter region. Taken together, these data indicate that constitutive JNK activity is specifically required for the initial stage differentiation events of adipocytes.
Asunto(s)
Adipogénesis/fisiología , Proteína delta de Unión al Potenciador CCAAT/biosíntesis , Diferenciación Celular/fisiología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Antracenos/farmacología , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidoresRESUMEN
Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2 (CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown of either CXCL3 or CXCR2 by specific siRNA effectively inhibited the course of adipogenic differentiation. CXCL3 treatment of 3T3-L1 cells significantly induced the phosphorylation of ERK and c-jun N-terminal kinase (JNK). Furthermore, CXCL3-induced CCAAT-enhancer binding protein (C/EBP)ß and δ expression was suppressed by both ERK and JNK-specific inhibitors. Furthermore, chromatin immunoprecipitation assay revealed functional binding of PPARγ2 within the cxcl3 promoter region. Taken together, these results have indicated that CXCL3 is a novel adipokine that facilitates adipogenesis in an autocrine and/or a paracrine manner through induction of c/ebpb and c/ebpd.
Asunto(s)
Adipogénesis/fisiología , Adipoquinas/biosíntesis , Diferenciación Celular/fisiología , Quimiocinas CXC/biosíntesis , Sistema de Señalización de MAP Quinasas/fisiología , Comunicación Paracrina/fisiología , Células 3T3-L1 , Adipoquinas/genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Quimiocinas CXC/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Regiones Promotoras Genéticas , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismoRESUMEN
Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway.
Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Transducción de Señal , Células Madre/citología , Ultrasonido , Células 3T3-L1 , Adipocitos/citología , Animales , Antraquinonas , Compuestos Azo , Linaje de la Célula , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Curación de Fractura , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Osteogénesis , Osteoporosis/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Quinasas Asociadas a rho/metabolismoRESUMEN
Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.
Asunto(s)
Factores de Crecimiento de Fibroblastos , Placenta , Prolactina , Transducción de Señal , Superóxido Dismutasa , Animales , Femenino , Embarazo , Placenta/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Prolactina/metabolismo , Conducta Materna , Ratones Noqueados , Hipófisis/metabolismo , Eliminación de Gen , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Ratones Endogámicos C57BLRESUMEN
Naïve CD4(+) T helper (Th) cells differentiate into distinct subsets of effector cells (Th1, Th2, Th17, and induced regulatory T cells (iTreg)) expressing different sets of cytokines upon encounter with presented foreign antigens. It has been well established that Th1/Th2 balance is critical for the nature of the following immune responses. Previous reports have demonstrated important roles of c-Jun N-terminal kinase (JNK) in Th1/Th2 balance, whereas the regulatory mechanisms of JNK activity in Th cells have not been elucidated. Here, we show that dual specificity phosphatase 16 (DUSP16, also referred to as MKP-M or MKP-7), which preferentially inactivates JNK, is selectively expressed in Th2 cells. In the in vitro differentiation assay of naïve CD4(+) cells, DUSP16 expression is up-regulated during Th2 differentiation and down-regulated during Th1 differentiation. Chromatin immunoprecipitation revealed the increased acetylation of histone H3/H4 at the dusp16 gene promoter in CD4(+) T cells under the Th2 condition. Adenoviral transduction of naïve CD4(+) T cells with DUSP16 resulted in increased mRNA expression of IL-4 and GATA-3 in Th2 and decreased expression of IFNγ and T-bet in Th1 differentiation. In contrast, transduction of a dominant negative form of DUSP16 had the reverse effects. Furthermore, upon immunization, T cell-specific dusp16 transgenic mice produced antigen-specific IgG2a at lower amounts, whereas DN dusp16 transgenic mice produced higher amounts of antigen-specific IgG2a accompanied by decreased amounts of antigen-specific IgG1 and IgE than those of control mice. Together, these data suggest the functional role of DUSP16 in Th1/Th2 balance.
Asunto(s)
Diferenciación Celular/fisiología , Fosfatasas de Especificidad Dual/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Células TH1/enzimología , Células Th2/enzimología , Acetilación , Animales , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/inmunología , Femenino , Factor de Transcripción GATA3/biosíntesis , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/inmunología , Histonas/genética , Histonas/inmunología , Histonas/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Interferón gamma/biosíntesis , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-4/biosíntesis , Interleucina-4/genética , Interleucina-4/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/inmunología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunología , Proteínas de Dominio T Box/metabolismo , Células TH1/citología , Células TH1/inmunología , Células Th2/citología , Células Th2/inmunologíaRESUMEN
OBJECTIVES: To examine the effect of aerobic and resistant exercise intervention on inflammaging in middle-aged and older adults with type 2 diabetes mellitus (T2DM) using inflammatory cytokines, such as interleukin (IL)-1 ß, IL-6, tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) as biomarkers. DESIGN: Systematic review and meta-analysis. SETTING AND PARTICIPANTS: Middle-aged and older adults with T2DM in the community. METHODS: Articles were searched from 8 electronic databases. Randomized control trials (RCTs) published in English, from inception to October 31, 2021, were included in this review. Two authors conducted data extraction and quality appraisal independently following guidelines in the Cochrane Handbook for Systematic Reviews of Interventions. Meta-analysis was conducted using Review Manager. Heterogeneity was investigated using subgroup and sensitivity analysis. RESULTS: This review included 14 RCTs. The meta-analysis showed significant improvement in IL-6 [Z = 3.05; 95% confidence interval (CI): -3.60 to -0.79; P = .002], CRP (Z = 2.44; 95% CI: -0.55 to -0.06; P = .01) and TNF-α levels (Z = 2.96; 95% CI: -2.21 to -0.45; P = .003) post-exercise programs. Subgroup analysis revealed that combined aerobic and resistance exercises and long-term exercises have more significant improvement to the outcomes than usual care. Based on the Grades of Recommendation, Assessment, Development and Evaluation system, considerable risk of bias and low level of certainty were revealed in all biomarker outcomes. CONCLUSIONS AND IMPLICATIONS: Exercise intervention is effective in improving inflammatory, metabolic, and lipid markers in middle-aged and older adults with T2DM. By modifying the levels of these markers with exercise, inflammation and insulin resistance can be improved. Long-term, combined aerobic and resistance exercise interventions have more significant effect on biomarkers. The small sample size of this meta-analysis limited the generalizability of the results. Future studies can consider adopting a more optimized exercise regimen to achieve effective T2DM management in middle-aged and older adults. Similar studies should expand to other populations and larger sample sizes to explore replicability of these effects.
Asunto(s)
Diabetes Mellitus Tipo 2 , Factor de Necrosis Tumoral alfa , Anciano , Proteína C-Reactiva , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Terapia por Ejercicio , Humanos , Interleucina-6 , Persona de Mediana EdadRESUMEN
Patients undergoing unilateral orthopedic or neurological rehabilitation have different levels of impairments in the right- or left-dominant hand. However, how handedness and the complexity of the motor task affect motor skill acquisition and its interlimb transfer remains unknown. In the present study, participants performed finger key presses on a numeric keypad at 4 levels of sequence complexities with each hand in a randomized order. Furthermore, they also performed motor sequence practice with the dominant hand to determine its effect on accuracy, reaction time, and movement time. The NASA-TLX at the end of each block of both testing and practice was used to confirm participants' mental workload related to sequence complexity. Both right- and left-handed participants performed the motor sequence task with faster RT when using their right hand. Although participants had increasing RT with increasing sequence complexity, this association was unrelated to handedness. Motor sequence practice produced motor skill acquisition and interlimb transfer indicated by a decreased RT, however, these changes were independent of handedness. Higher sequence complexity was still associated with longer RT after the practice, moreover, both right- and left-handed participants' RT increased with the same magnitude with the increase in sequence complexity. Similar behavioral pattern was observed in MT as in RT. Overall, our RT results may indicate left-hemisphere specialization for motor sequencing tasks, however, neuroimaging studies are needed to support these findings. On the other hand, handedness did not affect motor skill acquisition by the dominant hand or interlimb transfer to the non-dominant hand regardless of task complexity level.
Asunto(s)
Lateralidad Funcional , Destreza Motora , Humanos , Desempeño Psicomotor , Movimiento , Tiempo de Reacción , ManoRESUMEN
OBJECTIVE: A major factor in the growing world-wide epidemic of obesity and type 2 diabetes is the increased risk of transmission of metabolic disease from obese mothers to both first (F1) and second (F2) generation offspring. Fortunately, recent pre-clinical studies demonstrate that exercise before and during pregnancy improves F1 metabolic health, providing a potential means to disrupt this cycle of disease. Whether the beneficial effects of maternal exercise can also be transmitted to the F2 generation has not been investigated. METHODS: C57BL/6 female mice were fed a chow or high-fat diet (HFD) and housed in individual cages with or without running wheels for 2 wks before breeding and during gestation. Male F1 offspring were sedentary and chow-fed, and at 8-weeks of age were bred with age-matched females from untreated parents. This resulted in 4 F2 groups based on grandmaternal treatment: chow sedentary; chow trained; HFD sedentary; HFD trained. F2 were sedentary and chow-fed and studied up to 52-weeks of age. RESULTS: We find that grandmaternal exercise improves glucose tolerance and decreases fat mass in adult F2 males and females, in the absence of any treatment intervention of the F1 after birth. Grandmaternal exercise also improves F2 liver metabolic function, including favorable effects on gene and miRNA expression, triglyceride concentrations and hepatocyte glucose production. CONCLUSION: Grandmaternal exercise has beneficial effects on the metabolic health of grandoffspring, demonstrating an important means by which exercise during pregnancy could help reduce the worldwide incidence of obesity and type 2 diabetes.