Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Immunol ; 197(2): 491-503, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27296665

RESUMEN

ICOS, a member of the CD28 family, represents a key molecule that regulates adaptive responses to foreign Ags. ICOS is prominently expressed on T follicular helper (TFH) cells, a specialized CD4(+) T cell subset that orchestrates B cell differentiation within the germinal centers and humoral response. However, the contribution of ICOS and TFH cells to autoantibody profiles under pathological conditions has not been thoroughly investigated. We used the Sle1 lupus-prone mouse model to examine the role of ICOS in the expansion and function of pathogenic TFH cells. Genetic deletion of ICOS impacted the expansion of TFH cells in B6.Sle1 mice and inhibited the differentiation of B lymphocytes into plasma cells. The phenotypic changes observed in B6.Sle1-ICOS-knockout mice were also associated with a significant reduction in class-switched IgG, and anti-nucleosomal IgG-secreting B cells compared with B6.Sle1 animals. The level of vascular cell adhesion protein 1, a molecule that was shown to be elevated in patients with SLE and in lupus models, was also increased in an ICOS-dependent manner in Sle1 mice and correlated with autoantibody levels. The elimination of ICOS-expressing CD4(+) T cells in B6.Sle1 mice, using a glyco-engineered anti-ICOS-depleting Ab, resulted in a significant reduction in anti-nucleosomal autoantibodies. Our results indicate that ICOS regulates the ontogeny and homeostasis of B6.Sle1 TFH cells and influences the function of TFH cells during aberrant germinal center B cell responses. Therapies targeting the ICOS signaling pathway may offer new opportunities for the treatment of lupus and other autoimmune diseases.


Asunto(s)
Tolerancia Inmunológica/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Lupus Eritematoso Sistémico/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Traslado Adoptivo , Animales , Linfocitos B/inmunología , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Inmunohistoquímica , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Factores de Transcripción/genética , Factores de Transcripción/inmunología
2.
J Immunol ; 192(4): 1480-90, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24442430

RESUMEN

B cell activation is regulated by a variety of signals. CD19 positively regulates B cell activation, augmenting signals delivered through the BCR complex. In contrast, CD32b contains an ITIM and negatively regulates BCR signaling. Importantly, there are drugs currently in clinical trials and preclinical development that cross-link CD32b to molecules within the BCR complex. We wanted to address how single engagement versus cotargeting these molecules affects human B cell function. When B cells from healthy individuals were activated by signals that mimic a T cell response (IL-21 costimulation), ligation of CD32b, but not CD19, inhibited B cell expansion and plasma cell (PC) differentiation. In contrast, when B cells were activated through TLR, anti-CD19, but not anti-CD32b, blunted the response. However, when both CD19 and CD32b were coengaged by a bispecific anti-CD19×CD32b Ab, both types of stimuli were potently inhibited. Cross-linking CD19 with CD32b also inhibited Ab-independent functions of B cells, such as HLA upregulation, cytokine production, and the ability of B cells to prime CD4(+) T cells. Finally, although cross-linking CD19 and CD32b inhibited PC differentiation of primary B cells, it did not alter Ig production from pre-established PCs. These data elucidate the mechanism by which a complex set of signals determines the fate of B cell responsiveness. Although signals through CD19 influence TLR-driven activation, CD32b impacts the magnitude of the response following IL-21 costimulation. Therefore, simultaneous targeting of multiple surface molecules may be a necessary approach to comprehensively modulate B cell activation in vivo.


Asunto(s)
Antígenos CD19/metabolismo , Linfocitos B/inmunología , Activación de Linfocitos/inmunología , Células Plasmáticas/metabolismo , Receptores de IgG/metabolismo , Anticuerpos/inmunología , Antígenos CD19/biosíntesis , Antígenos CD19/inmunología , Antígenos de Diferenciación de Linfocitos B/inmunología , Enfermedades Autoinmunes/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Muerte Celular/inmunología , Diferenciación Celular , Células Cultivadas , Reactivos de Enlaces Cruzados , Humanos , Memoria Inmunológica/inmunología , Interleucinas/metabolismo , Unión Proteica/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de IgG/biosíntesis , Receptores de IgG/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo
3.
Br J Haematol ; 155(4): 426-37, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21902688

RESUMEN

Human cluster of differentiation (CD) antigen 19 is a B cell-specific surface antigen and an attractive target for therapeutic monoclonal antibody (mAb) approaches to treat malignancies of B cell origin. MEDI-551 is an affinity-optimized and afucosylated CD19 mAb with enhanced antibody-dependent cellular cytotoxicity (ADCC). The results from in vitro ADCC assays with Natural Killer cells as effector cells, demonstrate that MEDI-551 is effective at lower mAb doses than rituximab with multiple cell lines as well as primary chronic lymphocytic leukaemia and acute lymphoblastic leukaemia samples. Targeting CD19 with MEDI-551 was also effective in several severe combined immunodeficiency lymphoma models. Furthermore, the combination of MEDI-551 with rituximab resulted in prolonged suppression of tumour growth, demonstrating that therapeutic mAbs with overlapping effector function can be combined for greater tumour growth inhibition. Together, the data demonstrate that MEDI-551 has potent antitumour activity in preclinical models of B cell malignancies. The results also suggest that the combination of the ADCC-enhanced CD19 mAb with an anti-CD20 mAb could be a novel approach for the treatment of B cell lymphomas.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos CD19/inmunología , Leucemia de Células B/inmunología , Leucemia de Células B/terapia , Linfoma de Células B/inmunología , Linfoma de Células B/terapia , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales de Origen Murino/administración & dosificación , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones SCID , Ingeniería de Proteínas/métodos , Receptores Fc/inmunología , Rituximab , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Pharmacol Exp Ther ; 335(1): 213-22, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20605905

RESUMEN

The pan B-cell surface antigen CD19 is an attractive target for therapeutic monoclonal antibody (mAb) approaches. We have generated a new afucosylated anti-human (hu)CD19 mAb, MEDI-551, with increased affinity to human FcγRIIIA and mouse FcγRIV and enhanced antibody-dependent cellular cytotoxicity (ADCC). During in vitro ADCC assays with B-cell lines, MEDI-551 is effective at much lower mAb concentrations than the fucosylated parental mAb anti-CD19-2. Furthermore, the afucosylated CD19 mAb MEDI-551 depleted B cells from normal donor peripheral blood mononuclear cell samples in an autologous ADCC assay, as well as blood and tissue B cells in human CD19/CD20 double transgenic (Tg) mice at lower concentrations than that of the positive control mAb rituximab. In huCD19/CD20 Tg mice, both macrophage-mediated phagocytosis and complement-dependent cytotoxicity contribute to depletion with rituximab; MEDI-551 did not require complement for maximal B-cell depletion. Furthermore, extended B-cell depletion from the blood and spleen was achieved with MEDI-551, which is probably explained by bone marrow B-cell depletion in huCD19/CD20 Tg mice relative to the control mAb rituximab. In summary, MEDI-551 has potent B-cell-depleting activity in vitro and in vivo and may be a promising new approach for the treatment of B-cell malignancies and autoimmune diseases.


Asunto(s)
Antígenos CD19/inmunología , Linfocitos B/fisiología , Animales , Anticuerpos Bloqueadores/farmacología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales de Origen Murino , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD19/genética , Proliferación Celular/efectos de los fármacos , Fucosa/química , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Transgénicos , Ingeniería de Proteínas , Rituximab
5.
Sci Transl Med ; 10(431)2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29514998

RESUMEN

Systemic sclerosis (SSc) is a debilitating inflammatory and fibrotic disease that affects the skin and internal organs. Although the pathophysiology of SSc remains poorly characterized, mononuclear cells, mainly macrophages and T cells, have been implicated in inflammation and fibrosis. Inducible costimulator (ICOS), which is expressed on a subset of memory T helper (TH) and T follicular helper (TFH) cells, has been shown to be increased in SSc and associated with disease pathology. However, the identity of the relevant ICOS+ T cells and their contribution to inflammation and fibrosis in SSc are still unknown. We show that CD4+ ICOS-expressing T cells with a TFH-like phenotype infiltrate the skin of patients with SSc and are correlated with dermal fibrosis and clinical disease status. ICOS+ TFH-like cells were found to be increased in the skin of graft-versus-host disease (GVHD)-SSc mice and contributed to dermal fibrosis via an interleukin-21- and matrix metalloproteinase 12-dependent mechanism. Administration of an anti-ICOS antibody to GVHD-SSc mice prevented the expansion of ICOS+ TFH-like cells and inhibited inflammation and dermal fibrosis. Interleukin-21 neutralization in GVHD-SSc mice blocked disease pathogenesis by reducing skin fibrosis. These results identify ICOS+ TFH-like profibrotic cells as key drivers of fibrosis in a GVHD-SSc model and suggest that inhibition of these cells could offer therapeutic benefit for SSc.


Asunto(s)
Fibrosis/inmunología , Fibrosis/metabolismo , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/metabolismo , Linfocitos T/metabolismo , Animales , Femenino , Fibrosis/terapia , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Enfermedad Injerto contra Huésped/terapia , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Interleucinas/antagonistas & inhibidores , Interleucinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Receptores de Interleucina-21/metabolismo , Esclerodermia Sistémica/terapia , Piel/inmunología , Piel/metabolismo , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/terapia
6.
BMC Immunol ; 6: 13, 2005 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15978127

RESUMEN

BACKGROUND: Cytokine flow cytometry (CFC) or intracellular cytokine staining (ICS) can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online). RESULTS: Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC) were shipped to various sites, where ICS assays using cytomegalovirus (CMV) pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results ((CD4+)cytokine+ cells and (CD8+)cytokine+ cells) were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template. Mean inter-laboratory coefficient of variation (C.V.) ranged from 17-44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC) yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template) reduced the inter-lab C.V. by 5-20%, depending upon the experiment. The inter-lab C.V. was lowest (18-24%) for samples with a mean of > 0.5% IFNgamma + T cells, and highest (57-82%) for samples with a mean of < 0.1% IFNgamma + cells. CONCLUSION: ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more consistent results than shipped whole blood. Analysis, particularly gating, is a significant source of variability, and can be reduced by centralized analysis and/or use of a standardized dynamic gating template. Use of pre-aliquoted lyophilized reagents for stimulation and staining can provide further standardization to these assays.


Asunto(s)
Citocinas/sangre , Citometría de Flujo/normas , Linfocitos T/química , Conservación de la Sangre , Criopreservación , Infecciones por Citomegalovirus/sangre , Infecciones por Citomegalovirus/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo/métodos , Liofilización , Humanos , Indicadores y Reactivos , Laboratorios , Linfocitos/química , Fosfoproteínas/sangre , Reproducibilidad de los Resultados , Manejo de Especímenes , Proteínas de la Matriz Viral/sangre
7.
J Immunol Methods ; 260(1-2): 157-72, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11792386

RESUMEN

Vaccines in general and HIV vaccines in particular are focusing ever more on the induction of cellular immunity specifically the generation of cytotoxic T cells (CTL). As progress is made towards developing a safe and effective HIV vaccine, there is a need for a robust, sensitive and reproducible assay to evaluate vaccine-induced cellular immunogenicity in Phase II/III trials. The enzyme-linked immunospot (ELISPOT) assay fits these criteria and is a technology that is readily transferable and amenable to high-through-put screening. There is a need for reagents that can be used as positive controls and for optimizing and standardizing the assay. We selected a panel of 23 8-11 mer Influenza virus (Flu), Cytomegalovirus (CMV) and Epstein Barr virus (EBV) epitopes recognized by CD8 positive T cells and presented by 11 class I HLA-A and HLA-B alleles whose cumulative frequencies represent >100% of Caucasian individuals. We examined interferon-gamma (IFN-gamma) secretion in peripheral blood mononuclear cells (PBMC) incubated with the peptides using a modified ELISPOT assay. IFN-gamma secretion was detected in 15/17 (88%) HIV-1 seronegative and 14/20 (70%) HIV-1 seropositive individuals. Release of IFN-gamma in response to the pool of peptides was CD8+ T cell mediated and HLA restricted. In vitro stimulation of PBMC with individual peptides or the pool of peptides led to the expansion of T cells capable of killing target cells expressing the appropriate viral antigen in a CTL assay. The size, shape and appearance of the spots produced using this peptide panel provided a standard for the establishment of acceptance criteria of spots for the evaluation of ELISPOT plates using an automated reader system.


Asunto(s)
Vacunas contra el SIDA , Antígenos VIH/análisis , Técnicas de Inmunoadsorción , Linfocitos T CD8-positivos/inmunología , Antígenos VIH/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Activación de Linfocitos , Control de Calidad
8.
Vaccine ; 30(10): 1830-40, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-22234262

RESUMEN

The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.


Asunto(s)
Vacunas contra el SIDA/inmunología , Inmunidad Celular , Inmunidad Humoral , Vacunas de ADN/inmunología , Carga Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Animales , Anticuerpos Neutralizantes/sangre , Linfocitos T CD8-positivos/inmunología , Femenino , Productos del Gen gag/inmunología , Productos del Gen pol/inmunología , Anticuerpos Anti-VIH/sangre , VIH-1/inmunología , Inmunización Secundaria , Inmunoglobulina G/sangre , Macaca mulatta , Masculino , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
9.
J Infect Dis ; 198(12): 1783-93, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18980502

RESUMEN

Although respiratory syncytial virus (RSV) infection is the most important cause of bronchiolitis in infants, the pathogenesis of RSV disease is poorly described. We studied histopathologic changes in a panel of lung tissue specimens obtained from infants with fatal cases of primary RSV infection. In these tissues, airway occlusion with accumulations of infected, apoptotic cellular debris and serum protein was consistently observed. Similar observations were found after RSV infection in New Zealand black (NZB) mice, which have constitutive deficiencies in macrophage function, but not in BALB/c mice. A deficiency in the number of alveolar macrophages in NZB mice appears to be central to enhanced disease, because depletion of alveolar macrophages in BALB/c mice before RSV exposure resulted in airway occlusion. In mice with insufficient numbers of macrophages, RSV infection yielded an increased viral load and enhanced expression of type I interferon-associated genes at the height of disease. Together, our data suggest that innate, rather than adaptive, immune responses are critical determinants of the severity of RSV bronchiolitis.


Asunto(s)
Obstrucción de las Vías Aéreas/patología , Obstrucción de las Vías Aéreas/virología , Bronquiolitis/complicaciones , Macrófagos/fisiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Animales , Ácido Clodrónico/farmacología , Humanos , Inmunidad Innata , Recién Nacido , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NZB , Virus Sincitial Respiratorio Humano
10.
J Virol ; 81(5): 2440-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17182686

RESUMEN

The importance of HLA class I-restricted CD8 T-cell responses in the control of human immunodeficiency virus (HIV) infection is generally accepted. While several studies have shown an association of certain HLA class I alleles with slower disease progression, it is not fully established whether this effect is mediated by HIV-specific CD8 T-cell responses restricted by these alleles. In order to study the influence of the HLA class I alleles on the HIV-specific CD8 T-cell response and on viral control, we have assessed HIV-specific epitope recognition, plasma viral load, and expression of HLA class I alleles in a cohort of HIV-seropositive bar workers. Possession of the HLA class I alleles B5801, B8101, and B0702 was associated with a low median viral load and simultaneously with a broader median recognition of Gag epitopes compared to all other HLA alleles (twofold increase) (P = 0.0035). We further found an inverse linear relationship between the number of Gag epitopes recognized and the plasma viral load (R = -0.36; P = 0.0016). Particularly, recognition of multiple epitopes within two regions of Gag (amino acids [aa] 1 to 75 and aa 248 to 500) was associated with the maintenance of a low steady-state viremia, even years after acute infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Productos del Gen gag/inmunología , Seropositividad para VIH/inmunología , Seropositividad para VIH/virología , VIH-1/inmunología , Estudios de Cohortes , Epítopos/genética , Epítopos/inmunología , Femenino , Productos del Gen gag/genética , Genes MHC Clase I , Seropositividad para VIH/genética , VIH-1/genética , VIH-1/fisiología , Humanos , Viremia/inmunología , Viremia/virología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA