Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 29(68): e202302527, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37602522

RESUMEN

DNA G-quadruplexes (GQs) are of great interest due to their involvement in crucial biological processes such as telomerase maintenance and gene expression. Furthermore, they are reported as catalytically active DNAzymes and building blocks in bio-nanotechnology. GQs exhibit remarkable structural diversity and conformational heterogeneity, necessitating precise and reliable tools to unravel their structure-function relationships. Here, we present insights into the structure and conformational flexibility of a unimolecular GQ with high spatial resolution via electron-nuclear double resonance (ENDOR) experiments combined with Cu(II) and fluorine labeling. These findings showcase the successful application of the 19 F-ENDOR methodology at 34 GHz, overcoming the limitations posed by the complexity and scarcity of higher-frequency spectrometers. Importantly, our approach retains both sensitivity and orientational resolution. This integrated study not only enhances our understanding of GQs but also expands the methodological toolbox for studying other macromolecules.


Asunto(s)
Cobre , G-Cuádruplex , Espectroscopía de Resonancia por Spin del Electrón/métodos , Cobre/química
2.
Proc Natl Acad Sci U S A ; 116(34): 16841-16846, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31391299

RESUMEN

Nature's water splitting cofactor passes through a series of catalytic intermediates (S0-S4) before O-O bond formation and O2 release. In the second last transition (S2 to S3) cofactor oxidation is coupled to water molecule binding to Mn1. It is this activated, water-enriched all MnIV form of the cofactor that goes on to form the O-O bond, after the next light-induced oxidation to S4 How cofactor activation proceeds remains an open question. Here, we report a so far not described intermediate (S3') in which cofactor oxidation has occurred without water insertion. This intermediate can be trapped in a significant fraction of centers (>50%) in (i) chemical-modified cofactors in which Ca2+ is exchanged with Sr2+; the Mn4O5Sr cofactor remains active, but the S2-S3 and S3-S0 transitions are slower than for the Mn4O5Ca cofactor; and (ii) upon addition of 3% vol/vol methanol; methanol is thought to act as a substrate water analog. The S3' electron paramagnetic resonance (EPR) signal is significantly broader than the untreated S3 signal (2.5 T vs. 1.5 T), indicating the cofactor still contains a 5-coordinate Mn ion, as seen in the preceding S2 state. Magnetic double resonance data extend these findings revealing the electronic connectivity of the S3' cofactor is similar to the high spin form of the preceding S2 state, which contains a cuboidal Mn3O4Ca unit tethered to an external, 5-coordinate Mn ion (Mn4). These results demonstrate that cofactor oxidation regulates water molecule insertion via binding to Mn4. The interaction of ammonia with the cofactor is also discussed.

3.
J Am Chem Soc ; 143(50): 21410-21415, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34898204

RESUMEN

Singlet vinylidenes (R2C═C:) are proposed as intermediates in a series of organic reactions, and very few have been studied by matrix isolation or gas-phase spectroscopy. Triplet vinylidenes, however, featuring two unpaired electrons at a monosubstituted carbon atom are thus far only predicted as electronically excited-state species and represent an unexplored class of carbon-centered diradicals. We report the photochemical generation and low-temperature EPR/ENDOR characterization of the first ground-state high-spin (triplet) vinylidene. The zero-field splitting parameters (D = 0.377 cm-1 and |E|/D = 0.028) were determined, and the 13C hyperfine coupling tensor was obtained by 13C-ENDOR measurements. Most strikingly, the isotropic 13C hyperfine coupling constant (50 MHz) is far smaller than the characteristic values of triplet carbenes, demonstrating a unique electronic structure which is supported by quantum chemical calculations.

4.
Angew Chem Int Ed Engl ; 60(35): 19155-19161, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33844392

RESUMEN

The E. coli ribonucleotide reductase (RNR), a paradigm for class Ia enzymes including human RNR, catalyzes the biosynthesis of DNA building blocks and requires a di-iron tyrosyl radical (Y122. ) cofactor for activity. The knowledge on the in vitro Y122. structure and its radical distribution within the ß2 subunit has accumulated over the years; yet little information exists on the in vivo Y122. . Here, we characterize this essential radical in whole cells. Multi-frequency EPR and electron-nuclear double resonance (ENDOR) demonstrate that the structure and electrostatic environment of Y122. are identical under in vivo and in vitro conditions. Pulsed dipolar EPR experiments shed light on a distinct in vivo Y122. per ß2 distribution, supporting the key role of Y. concentrations in regulating RNR activity. Additionally, we spectroscopically verify the generation of an unnatural amino acid radical, F3 Y122. , in whole cells, providing a crucial step towards unique insights into the RNR catalysis under physiological conditions.


Asunto(s)
Escherichia coli/enzimología , Ribonucleótido Reductasas/metabolismo , Tirosina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Radicales Libres/metabolismo , Ribonucleótido Reductasas/química , Tirosina/química
5.
Angew Chem Int Ed Engl ; 60(9): 4939-4947, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33063395

RESUMEN

DNA G-quadruplexes show a pronounced tendency to form higher-order structures, such as π-stacked dimers and aggregates with aromatic binding partners. Reliable methods for determining the structure of these non-covalent adducts are scarce. Here, we use artificial square-planar Cu(pyridine)4 complexes, covalently incorporated into tetramolecular G-quadruplexes, as rigid spin labels for detecting dimeric structures and measuring intermolecular Cu2+ -Cu2+ distances via pulsed dipolar EPR spectroscopy. A series of G-quadruplex dimers of different spatial dimensions, formed in tail-to-tail or head-to-head stacking mode, were unambiguously distinguished. Measured distances are in full agreement with results of molecular dynamics simulations. Furthermore, intercalation of two well-known G-quadruplex binders, PIPER and telomestatin, into G-quadruplex dimers resulting in sandwich complexes was investigated, and previously unknown binding modes were discovered. Additionally, we present evidence that free G-tetrads also intercalate into dimers. Our transition metal labeling approach, combined with pulsed EPR spectroscopy, opens new possibilities for examining structures of non-covalent DNA aggregates.

6.
J Biol Chem ; 294(48): 18372-18386, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31591267

RESUMEN

A heterobimetallic Mn/Fe cofactor is present in the R2 subunit of class Ic ribonucleotide reductases (R2c) and in R2-like ligand-binding oxidases (R2lox). Although the protein-derived metal ligands are the same in both groups of proteins, the connectivity of the two metal ions and the chemistry each cofactor performs are different: in R2c, a one-electron oxidant, the Mn/Fe dimer is linked by two oxygen bridges (µ-oxo/µ-hydroxo), whereas in R2lox, a two-electron oxidant, it is linked by a single oxygen bridge (µ-hydroxo) and a fatty acid ligand. Here, we identified a second coordination sphere residue that directs the divergent reactivity of the protein scaffold. We found that the residue that directly precedes the N-terminal carboxylate metal ligand is conserved as a glycine within the R2lox group but not in R2c. Substitution of the glycine with leucine converted the resting-state R2lox cofactor to an R2c-like cofactor, a µ-oxo/µ-hydroxo-bridged MnIII/FeIII dimer. This species has recently been observed as an intermediate of the oxygen activation reaction in WT R2lox, indicating that it is physiologically relevant. Cofactor maturation in R2c and R2lox therefore follows the same pathway, with structural and functional divergence of the two cofactor forms following oxygen activation. We also show that the leucine-substituted variant no longer functions as a two-electron oxidant. Our results reveal that the residue preceding the N-terminal metal ligand directs the cofactor's reactivity toward one- or two-electron redox chemistry, presumably by setting the protonation state of the bridging oxygens and thereby perturbing the redox potential of the Mn ion.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Manganeso/metabolismo , Oxidorreductasas/metabolismo , Ribonucleótido Reductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Geobacillus/enzimología , Geobacillus/genética , Hierro/química , Ligandos , Manganeso/química , Modelos Moleculares , Estructura Molecular , Mutación , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxígeno/química , Oxígeno/metabolismo , Dominios Proteicos , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética
7.
J Am Chem Soc ; 142(23): 10255-10260, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32412757

RESUMEN

Earlier work revealed that metal-superoxo species primarily function as radicals and/or electrophiles. Herein, we present ambiphilicity of a MnIII-superoxo complex revealed by its proton- and metal-coupled electron-transfer processes. Specifically, a MnIV-hydroperoxo intermediate, [Mn(BDPBrP)(OOH)]+ (1, H2BDPBrP = 2,6-bis((2-(S)-di(4-bromo)phenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) was generated by treatment of a MnIII-superoxo complex, Mn(BDPBrP)(O2•) (2) with trifluoroacetic acid at -120 °C. Detailed insights into the electronic structure of 1 are obtained using resonance Raman and multi-frequency electron paramagnetic resonance spectroscopies coupled with density functional theory calculations. Similarly, the reaction of 2 with scandium(III) triflate was shown to give a Mn(IV)/Sc(III) bridging peroxo species, [Mn(BDPBrP)(OO)Sc(OTf)n](3-n)+ (4). Furthermore, it is found that deprotonation of 1 quantitatively regenerates 2, and that one-electron oxidation of the corresponding MnIII-hydroperoxo species, Mn(BDPBrP)(OOH) (3), also yields 1.

8.
Chem Sci ; 13(24): 7289-7294, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35799827

RESUMEN

[FeFe]-hydrogenases catalyze the reversible conversion of molecular hydrogen into protons and electrons with remarkable efficiency. However, their industrial applications are limited by their oxygen sensitivity. Recently, it was shown that the [FeFe]-hydrogenase from Clostridium beijerinckii (CbA5H) is oxygen-resistant and can be reactivated after oxygen exposure. In this work, we used multifrequency continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy to characterize the active center of CbA5H, the H-cluster. Under oxidizing conditions, the spectra were dominated by an additional and unprecedented radical species. The generation of this radical signal depends on the presence of an intact H-cluster and a complete proton transfer pathway including the bridging azadithiolate ligand. Selective 57Fe enrichment combined with isotope-sensitive electron-nuclear double resonance (ENDOR) spectroscopy revealed a spin density distribution that resembles an H-cluster state. Overall, we uncovered a radical species in CbA5H that is potentially involved in the redox sensing of CbA5H.

9.
Chem Sci ; 13(29): 8704, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35974761

RESUMEN

[This corrects the article DOI: 10.1039/D2SC00385F.].

10.
Biophys Rep (N Y) ; 1(2): 100016, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36425453

RESUMEN

As essential electron translocating proteins in photosynthetic organisms, multiple plant-type ferredoxin (Fdx) isoforms are involved in a high number of reductive metabolic processes in the chloroplast. To allow quick cellular responses under changing environmental conditions, different plant-type Fdxs in Chlamydomonas reinhardtii were suggested to have adapted their midpoint potentials to a wide range of interaction partners. We performed pulsed electron paramagnetic resonance (EPR) monitored redox potentiometry at Q-band on three Fdx isoforms for a straightforward determination of their midpoint potentials. Additionally, site-directed mutagenesis was used to tune the midpoint potential of CrFdx1 in a range of approximately -338 to -511 mV, confirming the importance of single positions in the protein environment surrounding the [2Fe2S] cluster. Our results present a new target for future studies aiming to modify the catalytic activity of CrFdx1 that plays an essential role either as electron acceptor of photosystem I or as electron donor to hydrogenases under certain conditions. Additionally, the precisely determined redox potentials in this work using pulsed EPR demonstrate an alternative method that provides additional advantages compared with the well-established continuous wave EPR technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA