Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pediatr Res ; 95(1): 316-324, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37758863

RESUMEN

BACKGROUND: Preterm survivors have increased risk for impaired cardiometabolic health. We assessed glucose regulation and cardiometabolic biomarkers in adult very low birth weight (VLBW, <1500 g) survivors, using siblings as controls. METHODS: VLBW-participants were matched with term-born, same-sex siblings. At mean age 29.2 years (SD 3.9), 74 VLBW-adults and 70 siblings underwent a 2-h 75 g oral glucose tolerance test and blood tests for assessment of cardiometabolic biomarkers. RESULTS: Of participants, 23 (31%) VLBW and 11 (16%) sibling-controls met World Health Organization criteria for impaired glucose regulation (OR adjusted for age and sex 2.5, 95% CI: 1.1 to 5.8). Adjusting for age and sex, VLBW-participants showed 9.2% higher 2-h glucose (95% CI: 0.4% to 18.8%) than their siblings. Also, fasting (13.4%, -0.3% to 29.0%) and 2-h free fatty acids (15.6%, -2.4% to 36.9%) were higher in VLBW-participants. These differences were statistically significant only after further adjusting for confounders. No statistically significant differences were found regarding other measured biomarkers, including insulin resistance, atherogenic lipid profiles or liver tests. CONCLUSIONS: VLBW-adults showed more impaired fatty acid metabolism and glucose regulation. Differences in cardiometabolic biomarkers were smaller than in previous non-sibling studies. This may partly be explained by shared familial, genetic, or environmental factors. IMPACT: At young adult age, odds for impaired glucose regulation were 3.4-fold in those born at very low birth weight, compared to same-sex term-born siblings. Taking into consideration possible unmeasured, shared familial confounders, we compared cardiometabolic markers in adults born preterm at very low birth weight with term-born siblings. Prematurity increased risk for impaired glucose regulation, unrelated to current participant characteristics, including body mass index. In contrast to previous studies, differences in insulin resistance were not apparent, suggesting that insulin resistance may partially be explained by factors shared between siblings. Also, common cardiometabolic biomarkers were similar within sibling pairs.


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Recién Nacido , Femenino , Adulto Joven , Humanos , Adulto , Recién Nacido de muy Bajo Peso/fisiología , Enfermedades Cardiovasculares/diagnóstico , Glucosa , Biomarcadores
2.
Pediatr Res ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898107

RESUMEN

BACKGROUND: Globally, one in ten babies is born preterm (<37 weeks), and 1-2% preterm at very low birth weight (VLBW, <1500 g). As adults, they are at increased risk for a plethora of health conditions, e.g., cardiometabolic disease, which may partly be mediated by epigenetic regulation. We compared blood DNA methylation between young adults born at VLBW and controls. METHODS: 157 subjects born at VLBW and 161 controls born at term, from the Helsinki Study of Very Low Birth Weight Adults, were assessed for peripheral venous blood DNA methylation levels at mean age of 22 years. Significant CpG-sites (5'-C-phosphate-G-3') were meta-analyzed against continuous birth weight in four independent cohorts (pooled n = 2235) with cohort mean ages varying from 0 to 31 years. RESULTS: In the discovery cohort, 66 CpG-sites were differentially methylated between VLBW adults and controls. Top hits were located in HIF3A, EBF4, and an intergenic region nearest to GLI2 (distance 57,533 bp). Five CpG-sites, all in proximity to GLI2, were hypermethylated in VLBW and associated with lower birth weight in the meta-analysis. CONCLUSION: We identified differentially methylated CpG-sites suggesting an epigenetic signature of preterm birth at VLBW present in adult life. IMPACT: Being born preterm at very low birth weight has major implications for later health and chronic disease risk factors. The mechanism linking preterm birth to later outcomes remains unknown. Our cohort study of 157 very low birth weight adults and 161 controls found 66 differentially methylated sites at mean age of 22 years. Our findings suggest an epigenetic mark of preterm birth present in adulthood, which opens up opportunities for mechanistic studies.

3.
J Pediatr ; 246: 48-55.e7, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35301016

RESUMEN

OBJECTIVES: To assess radiographic brain abnormalities and investigate volumetric differences in adults born preterm at very low birth weight (<1500 g), using siblings as controls. STUDY DESIGN: We recruited 79 adult same-sex sibling pairs with one born preterm at very low birth weight and the sibling at term. We acquired 3-T brain magnetic resonance imaging from 78 preterm participants and 72 siblings. A neuroradiologist, masked to participants' prematurity status, reviewed the images for parenchymal and structural abnormalities, and FreeSurfer software 6.0 was used to conduct volumetric analyses. Data were analyzed by linear mixed models. RESULTS: We found more structural abnormalities in very low birth weight participants than in siblings (37% vs 13%). The most common finding was periventricular leukomalacia, present in 15% of very low birth weight participants and in 3% of siblings. The very low birth weight group had smaller absolute brain volumes (-0.4 SD) and, after adjusting for estimated intracranial volume, less gray matter (-0.2 SD), larger ventricles (1.5 SD), smaller thalami (-0.6 SD), caudate nuclei (-0.4 SD), right hippocampus (-0.4 SD), and left pallidum (-0.3 SD). We saw no volume differences in total white matter (-0.04 SD; 95% CI, -0.13 to 0.09). CONCLUSIONS: Preterm very low birth weight adults had a higher prevalence of brain abnormalities than their term-born siblings. They also had smaller absolute brain volumes, less gray but not white matter, and smaller volumes in several gray matter structures.


Asunto(s)
Encefalopatías , Sustancia Blanca , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris , Humanos , Recién Nacido , Recién Nacido de muy Bajo Peso , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
4.
Paediatr Perinat Epidemiol ; 36(5): 665-672, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35333415

RESUMEN

BACKGROUND: Children and adults born very low birthweight (VLBW, <1500 g) at preterm gestations have lower bone mineral density (BMD) and/or bone mineral content (BMC) than those born at term, but causality remains unknown. OBJECTIVES: Our aim was to assess BMD and BMC in adults born at VLBW in a sibling comparison setting to account for shared genetic and environmental confounders. METHODS: We conducted a cohort study of 77 adults born VLBW and 70 same-sex term-born siblings at mean age of 29 years. The primary outcome variables were BMD Z-scores, and BMC, of the femoral neck, lumbar spine, and whole body, measured using dual-energy X-ray absorptiometry. We analysed data by linear mixed models. RESULTS: The VLBW adults had a 0.25 (95% CI 0.02, 0.47) Z-score unit lower femoral neck BMD, and 0.35 (95% CI 0.16, 0.54) grams lower femoral neck BMC than their term-born siblings, after adjustment for sex, age, and maternal smoking. Additional adjustment for adult body size attenuated the results. Lumbar spine, and whole body BMC were also lower in the VLBW group. CONCLUSIONS: Individuals born at VLBW had lower BMC values at all three measurement sites, as well as lower femoral neck BMD Z-scores, compared to term-born siblings, partly explained by their smaller adult body size, but the differences were smaller than those reported previously with unrelated controls. This suggests that genetic or environmental confounders explain partly, but not exclusively, the association between preterm VLBW birth and adult bone mineralisation.


Asunto(s)
Densidad Ósea , Nacimiento Prematuro , Absorciometría de Fotón/métodos , Adulto , Niño , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Recién Nacido de muy Bajo Peso , Nacimiento Prematuro/epidemiología , Hermanos
5.
mBio ; 14(1): e0266322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36715540

RESUMEN

Numerous studies have described specific metabolites as biomarkers of severe liver diseases, but very few have measured gut microbiota (GM)-produced metabolites in fatty liver disease. We aimed at finding GM signatures and metabolite markers in plasma and feces related to high liver fat content. Based on imaging, we divided study participants into low (<5%, LF, n = 25) and high (>5%, HF, n = 39) liver fat groups. Fecal (LF n = 14, HF n = 25) and plasma (LF n = 11, HF n = 7) metabolomes of subsets of participants were studied using liquid chromatography/high resolution mass spectrometry. The GM were analyzed using 16S rRNA gene sequencing. Additionally, blood clinical variables and diet were studied. Dyslipidemia, higher liver enzymes and insulin resistance characterized the HF group. No major differences in diet were found between the groups. In the GM, the HF group had lower abundance of Bacteroides and Prevotellaceae NK3B31 group than the LF group after adjusting for metformin use or obesity. In feces, the HF group had higher levels of lysine and histidine degradation products, while 6-hydroxybetatestosterone (metabolized by CYP3A4) was low. Higher plasma levels of caffeine and its metabolites in the HF group indicate that the activity of hepatic CYP1A2 was lower than in the LF group. Our results suggest, that low fecal Prevotellaceae NK3B31 and Bacteroides abundance, and increased lysine and histidine degradation may serve as GM biomarkers of high liver fat. Altered plasma caffeine metabolites and lowered testosterone metabolism may specify decreased CYP activities, and their potential utility, as biomarkers of fatty liver disease. IMPORTANCE Because the high prevalence of nonalcoholic fatty liver disease sets diagnostic challenges to health care, identification of new biomarkers of the disease that in the future could have potential utility as diagnostic biomarkers of high liver fat content is important. Our results show that increased amino acid degradation products in the feces may be such biomarkers. In the blood, molecules that indicate defective hepatic metabolic enzyme activities were identified in individuals with high liver fat content.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Lisina/metabolismo , Histidina/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Cafeína/metabolismo , Hígado/metabolismo , Biomarcadores , Dieta Alta en Grasa
6.
Sci Adv ; 9(2): eadd5163, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638183

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide riboside (NR) has emerged as a promising compound to improve obesity-associated mitochondrial dysfunction and metabolic syndrome in mice. However, most short-term clinical trials conducted so far have not reported positive outcomes. Therefore, we aimed to determine whether long-term NR supplementation boosts mitochondrial biogenesis and metabolic health in humans. Twenty body mass index (BMI)-discordant monozygotic twin pairs were supplemented with an escalating dose of NR (250 to 1000 mg/day) for 5 months. NR improved systemic NAD+ metabolism, muscle mitochondrial number, myoblast differentiation, and gut microbiota composition in both cotwins. NR also showed a capacity to modulate epigenetic control of gene expression in muscle and adipose tissue in both cotwins. However, NR did not ameliorate adiposity or metabolic health. Overall, our results suggest that NR acts as a potent modifier of NAD+ metabolism, muscle mitochondrial biogenesis and stem cell function, gut microbiota, and DNA methylation in humans irrespective of BMI.


Asunto(s)
Microbioma Gastrointestinal , NAD , Humanos , Ratones , Animales , NAD/metabolismo , Biogénesis de Organelos , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Diferenciación Celular
7.
Sci Rep ; 12(1): 9905, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701494

RESUMEN

Preterm birth at very low birth weight (VLBW, < 1500 g) is associated with an accumulation of cardiovascular and metabolic risk factors from childhood at least to middle age. Small-scale studies suggest that this could partly be explained by increased visceral or ectopic fat. We performed magnetic resonance imaging on 78 adults born preterm at VLBW in Finland between 1978 and 1990 and 72 term same-sex siblings as controls, with a mean age of 29 years. We collected T1-weighted images from the abdomen, and magnetic resonance spectra from the liver, subcutaneous abdominal adipose tissue, and tibia. The adipose tissue volumes of VLBW adults did not differ from their term siblings when adjusting for age, sex, and maternal and perinatal factors. The mean differences were as follows: subcutaneous - 0.48% (95% CI - 14.8%, 16.3%), visceral 7.96% (95% CI - 10.4%, 30.1%), and total abdominal fat quantity 1.05% (95% CI - 13.7%, 18.4%). Hepatic triglyceride content was also similar. VLBW individuals displayed less unsaturation in subcutaneous adipose tissue (- 4.74%, 95% CI - 9.2%, - 0.1%) but not in tibial bone marrow (1.68%, 95% CI - 1.86%, 5.35%). VLBW adults displayed similar adipose tissue volumes and hepatic triglyceride content as their term siblings. Previously reported differences could thus partly be due to genetic or environmental characteristics shared between siblings. The VLBW group displayed less unsaturation in subcutaneous abdominal adipose tissue, suggesting differences in its metabolic activity and energy storage.


Asunto(s)
Nacimiento Prematuro , Hermanos , Abdomen , Grasa Abdominal/diagnóstico por imagen , Tejido Adiposo , Adulto , Cohorte de Nacimiento , Peso al Nacer , Niño , Femenino , Humanos , Recién Nacido , Recién Nacido de muy Bajo Peso , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Persona de Mediana Edad , Embarazo , Triglicéridos
8.
Cell Rep Med ; 2(4): 100226, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33948567

RESUMEN

Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcriptional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory pathways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle, glycolysis- and redox stress-related protein and metabolite levels remain higher. Furthermore, metabolomics analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dyslipidemia, suggesting that adipose tissue dominates in acquired obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Índice de Masa Corporal , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Músculo Esquelético/patología , Grasa Subcutánea/metabolismo , Gemelos Monocigóticos/genética
9.
Chronobiol Int ; 37(7): 1023-1033, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354238

RESUMEN

Chronotype is the temporal preference for activity and sleep during the 24 h day and is linked to mental and physical health, quality of life, and mortality. Later chronotypes, so-called "night owls", consistently display poorer health outcomes than "larks". Previous studies have suggested that preterm birth (<37 weeks of gestation) is associated with an earlier chronotype in children, adolescents, and young adults, but studies beyond this age are absent. Our aim was to determine if adults born preterm at very low birth weight (VLBW, ≤1500 g) display different chronotypes than their siblings. We studied VLBW adults, aged 29.9 years (SD 2.8), matched with same-sex term-born siblings as controls. A total of 123 participants, consisting of 53 sibling pairs and 17 unmatched participants, provided actigraphy-derived data on the timing, duration, and quality of sleep from 1640 nights (mean 13.3 per participant, SD 2.7). Mixed effects models provided estimates and significance tests. Compared to their siblings, VLBW adults displayed 27 min earlier sleep midpoint during free days (95% CI: 3 to 51 min, p =.029). This was also reflected in the timing of falling asleep, waking up, and sleep-debt corrected sleep midpoint. The findings were emphasized in VLBW participants born small for gestational age. VLBW adults displayed an earlier chronotype than their siblings still at age 30, which suggests that the earlier chronotype is an enduring individual trait not explained by shared family factors. This preference could provide protection from risks associated with preterm birth. ABBREVIATIONS: AGA: Appropriate for gestational age; ELBW: Extremely low birth weight, ≤ 1000 grams; FMBR: Finnish Medical Birth Registry; HeSVA: Helsinki Study of Very low birth weight Adults; MSFsc: Midsleep on free days, corrected for sleep debt; SGA: Small for gestational age, ≤ -2 SD; VLBW: Very low birth weight, ≤ 1500 grams; WASO: Wake after sleep onset.


Asunto(s)
Nacimiento Prematuro , Hermanos , Adolescente , Ritmo Circadiano , Femenino , Finlandia , Humanos , Recién Nacido , Recién Nacido de muy Bajo Peso , Embarazo , Calidad de Vida
10.
Cell Metab ; 31(6): 1078-1090.e5, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32386566

RESUMEN

NAD+ is a redox-active metabolite, the depletion of which has been proposed to promote aging and degenerative diseases in rodents. However, whether NAD+ depletion occurs in patients with degenerative disorders and whether NAD+ repletion improves their symptoms has remained open. Here, we report systemic NAD+ deficiency in adult-onset mitochondrial myopathy patients. We administered an increasing dose of NAD+-booster niacin, a vitamin B3 form (to 750-1,000 mg/day; clinicaltrials.govNCT03973203) for patients and their matched controls for 10 or 4 months, respectively. Blood NAD+ increased in all subjects, up to 8-fold, and muscle NAD+ of patients reached the level of their controls. Some patients showed anemia tendency, while muscle strength and mitochondrial biogenesis increased in all subjects. In patients, muscle metabolome shifted toward controls and liver fat decreased even 50%. Our evidence indicates that blood analysis is useful in identifying NAD+ deficiency and points niacin to be an efficient NAD+ booster for treating mitochondrial myopathy.


Asunto(s)
Miopatías Mitocondriales/metabolismo , Músculos/metabolismo , NAD/metabolismo , Niacina/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miopatías Mitocondriales/patología , Músculos/patología , NAD/deficiencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA