Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(3): 513-529.e21, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120663

RESUMEN

The human gut microbiota resides within a diverse chemical environment challenging our ability to understand the forces shaping this ecosystem. Here, we reveal that fitness of the Bacteroidales, the dominant order of bacteria in the human gut, is an emergent property of glycans and one specific metabolite, butyrate. Distinct sugars serve as strain-variable fitness switches activating context-dependent inhibitory functions of butyrate. Differential fitness effects of butyrate within the Bacteroides are mediated by species-level variation in Acyl-CoA thioesterase activity and nucleotide polymorphisms regulating an Acyl-CoA transferase. Using in vivo multi-omic profiles, we demonstrate Bacteroides fitness in the human gut is associated together, but not independently, with Acyl-CoA transferase expression and butyrate. Our data reveal that each strain of the Bacteroides exists within a unique fitness landscape based on the interaction of chemical components unpredictable by the effect of each part alone mediated by flexibility in the core genome.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Polisacáridos/metabolismo , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Aminoácidos de Cadena Ramificada/metabolismo , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Butiratos/química , Butiratos/farmacología , Coenzima A Transferasas/química , Coenzima A Transferasas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Variación Genética/efectos de los fármacos , Concentración de Iones de Hidrógeno , Metaboloma/efectos de los fármacos , Metaboloma/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
2.
Nature ; 622(7983): 611-618, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37699522

RESUMEN

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Inflamación Neurogénica , Neuronas Aferentes , Pericitos , Animales , Ratones , Toxinas Bacterianas/administración & dosificación , Toxinas Bacterianas/farmacología , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Péptido Relacionado con Gen de Calcitonina/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/microbiología , Inflamación Neurogénica/inducido químicamente , Inflamación Neurogénica/microbiología , Inflamación Neurogénica/patología , Pericitos/efectos de los fármacos , Pericitos/microbiología , Pericitos/patología , Receptores de Neuroquinina-1/metabolismo , Sustancia P/antagonistas & inhibidores , Sustancia P/metabolismo , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/microbiología , Neuronas Aferentes/patología , Mediadores de Inflamación/metabolismo , Ciego/efectos de los fármacos , Ciego/metabolismo , Transducción de Señal/efectos de los fármacos
3.
bioRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659931

RESUMEN

Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions [1]. To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express PLP1 in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.

4.
Curr Biol ; 32(6): R257-R264, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35349808

RESUMEN

All animals, from cnidarians to humans, are colonized with microbes, and the greatest diversity and magnitude of these host-associated microorganisms resides within the intestine. Referred to as the gut microbiome, membership can be as simple as one species of bacteria or can be composed of hundreds to thousands of different microbes across the domains of life. The relationship between the gut microbiome and host span from beneficial to detrimental; interactions may be context-dependent and occur across host physiology and organ systems. In this Primer, we focus on the mammalian host to discuss basic mechanisms by which the gut microbiome impacts the host and review mechanisms by which hosts and the environment shape the microbiome. We end by highlighting key concepts and discussing future directions for the field that will be critical for generating the next generation of knowledge of the gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias , Microbioma Gastrointestinal/fisiología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA