Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phys Chem Chem Phys ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046427

RESUMEN

The work provides a comprehensive explanation of the nature of chemical bonding through quantum chemical topology for multilayers of AIIIBVI compounds, such as GaSe, InSe, and GaTe, spanning pressures from 0 GPa to 30 GPa. These compounds are subjected to pressure orthogonal to the multilayers. Quantum chemical topological indices indicate that uniaxial pressure induces changes in hybridisation, leading to the disappearance of interlayer van der Waals forces. The distinct nature of the elements within the compounds results in different pressures at which van der Waals interactions disappear, as revealed by non-covalent interaction analysis. The presence or absence of chemical bonding is assessed by quantum topological indices as Espinosa indices, charge density distribution difference, and crystal orbital Hamilton populations. The varying changes in hybridisation, as indicated by topological indices, are corroborated by variations in the population of the electronic projected density of states. Ultimately, the type of chemical bonding is identified through the Espinosa indices in the field of Bader theory. This analysis confirms the existence of shared shell bonds between AIII and BVI atoms in vacuum that goes to an intermediate bond between shared and closed shells called the transition zone with increasing pressure. The implications and importance of this work extend beyond the presented results. It suggests that many other classes of two-dimensional materials may undergo phase transitions under uniaxial stress, leading to the formation of new phases with potentially interesting electronic properties.

2.
Phys Chem Chem Phys ; 25(48): 33031-33037, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38037396

RESUMEN

Bimetallic nanoparticles are attracting increasing attention as effective catalysts because they can exhibit higher efficiencies than their monometallic counterparts. Recent studies show that PdAu nanoparticles can exhibit truly impressive catalytic activity, due to the synergistic effect of their properties. However, fine-tuning the catalytic activity requires an understanding of the full picture of the processes taking place in bimetallic particles of different compositions and structures. Here we study the influence of the structure and composition of PdAu nanoparticles on their electronic properties, charge distribution and adsorption properties (CO and O) using ab initio calculations. Two types of nanoparticles were considered: core-shell (Pd@Au and Au@Pd) and bimetallic alloy (Au-Pd) with an average diameter of 2 nm (321 atoms), having either fcc, icosahedral or amorphous structures. The results obtained on surface charges show the possibility of fine-tuning the surface properties of nanoparticles by modifying their atomic structure and composition. In addition, the adsorption of O and CO on the surface of PdAu nanoparticles with fcc structure has been studied. The obtained adsorption data correlate with the surface charge redistribution and the d-band center. The results of this study thus open up great prospects for tuning the catalytic properties of nanocatalysts by modifying their local atomic environment.

3.
Inorg Chem ; 61(18): 6773-6784, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35476453

RESUMEN

We proposed an efficient method toward the synthesis of higher tungsten boride WB5-x in the vacuumless direct current atmospheric arc discharge plasma. The crystal structure of the synthesized samples of boron-rich tungsten boride was determined using computational techniques, showing a two-phase system. The ab initio calculations of the energies of various structures with similar X-ray diffraction (XRD) patterns allowed us to determine the composition of the formed higher tungsten boride. We determined the optimal parameters of synthesis to obtain samples with 61.5% WB5-x by volume. The transmission electron microscopy measurements showed that 90% of the particles have sizes of up to 100 nm, whereas the rest of them may have sizes from 125 to 225 nm. Our study shows the possibility of using the proposed vacuumless method as an efficient and inexpensive way to synthesize superhard WB5-x without employing resource-consuming vacuum techniques.

4.
Phys Chem Chem Phys ; 23(46): 26178-26184, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807199

RESUMEN

Oxidation is a unique process that significantly changes the structure and properties of a material. Doping of h-BN by oxygen is a hot topic in material science leading to the possibility of synthesis of novel 2D structures with customized electronic properties. It is still unclear how the atomic structure changes in the presence of external atoms during the oxidation of h-BN. We predict novel two-dimensional (2D) arrangements of boron oxynitride using the evolutionary algorithm of crystal structure prediction USPEX. All considered structures demonstrate semiconducting properties with a reduced bandgap compared with h-BN. Both molecular dynamics and phonon calculations show the dynamical stability of the new 2D B5N3O2 phase, and our calculations demonstrate that it can form a bulk layered structure with an interlayer distance larger than that of pure h-BN. The optical characterization shows a redshift of the absorption spectrum compared with pure h-BN. Incorporation of oxygen into the structure of 2D BN during synthesis or oxidation can dramatically change the covalent network of h-BN while preserving its two-dimensionality and flatness, following the presence of local dipole moments which could improve the piezoelectric properties.

5.
Nano Lett ; 20(8): 5900-5908, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32633975

RESUMEN

Two-dimensional transition metal carbides, that is, MXenes and especially Ti3C2, attract attention due to their excellent combination of properties. Ti3C2 nanosheets could be the material of choice for future flexible electronics, energy storage, and electromechanical nanodevices. There has been limited information available on the mechanical properties of Ti3C2, which is essential for their utilization. We have fabricated Ti3C2 nanosheets and studied their mechanical properties using direct in situ tensile tests inside a transmission electron microscope, quantitative nanomechanical mapping, and theoretical calculations employing machine-learning derived potentials. Young's modulus in the direction perpendicular to the Ti3C2 basal plane was found to be 80-100 GPa. The tensile strength of Ti3C2 nanosheets reached up to 670 MPa for ∼40 nm thin nanoflakes, while a strong dependence of tensile strength on nanosheet thickness was demonstrated. Theoretical calculations allowed us to study mechanical characteristics of Ti3C2 as a function of nanosheet geometrical parameters and structural defect concentration.

6.
J Am Chem Soc ; 142(6): 2803-2811, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31967807

RESUMEN

Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron-phonon interaction in metal superhydrides. Encouraged by the recently found highest-TC superconductor fcc-LaH10, here we discover several superhydrides of another lanthanoid, neodymium. We identify three novel metallic Nd-H phases at pressures ranging from 85 to 135 GPa: I4/mmm-NdH4, C2/c-NdH7, and P63/mmc-NdH9, synthesized by laser-heating metal samples in NH3BH3 media for in situ generation of hydrogen. A lower trihydride Fm3̅m-NdH3 is found at pressures from 2 to 52 GPa. I4/mmm-NdH4 and C2/c-NdH7 are stable from 135 to 85 GPa, and P63/mmc-NdH9 is stable from 110 to 130 GPa. Measurements of the electrical resistance of NdH9 demonstrate a possible superconducting transition at ∼4.5 K in P63/mmc-NdH9. Our theoretical calculations predict that all of the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electronic band structure (>450 meV). The critical Néel temperatures for new neodymium hydrides are estimated using the mean-field approximation to be about 4 K (NdH4), 251 K (NdH7), and 136 K (NdH9).

7.
Environ Sci Technol ; 54(13): 7911-7921, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32515954

RESUMEN

To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles. Toluene-derived (C7) oxidation products have a similar volatility distribution to that of α-pinene-derived (C10) oxidation products, while naphthalene-derived (C10) oxidation products are much less volatile than those from toluene or α-pinene; they are thus stronger contributors to growth. Rapid progression through multiple generations of oxidation is more pronounced in toluene and naphthalene than in α-pinene, resulting in more oxidation but also favoring functional groups with much lower volatility per added oxygen atom, such as hydroxyl and carboxylic groups instead of hydroperoxide groups. Under conditions typical of polluted urban settings, naphthalene may well contribute to nucleation and the growth of the smallest particles, whereas the more abundant alkyl benzenes may overtake naphthalene once the particles have grown beyond the point where the Kelvin effect strongly influences the condensation driving force.


Asunto(s)
Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Aerosoles , Gases , Volatilización
8.
Phys Chem Chem Phys ; 21(9): 5262-5273, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30776037

RESUMEN

Most of the experimentally discovered compounds in the iron-nitrogen system belong to the low concentration part of the Fe-N phase diagram. In our paper, which is based on ab initio calculations, we have studied the formation and stability of high-pressure iron mono-nitride phases, and in particular a new magnetic phase with a NiAs-type structure. We have investigated the role of dynamic, thermodynamic and electronic properties, such as electronic correlations and pressure-induced phase stabilisation. Additionally, we have demonstrated that the new hexagonal FeN phase is stable over a wide range of external pressures and can persist at zero pressure as a metastable phase. Further, we have shown that this phase has a relatively low Curie temperature and may possess non-collinear magnetism.

9.
Nanotechnology ; 28(8): 085205, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28114121

RESUMEN

Here we present an investigation of new quasi-two-dimensional heterostructures based on the alternation of bounded carbon and boron nitride layers (C/BN). We carried out a theoretical study of the atomic structure, stability and electronic properties of the proposed heterostructures. Such ultrathin quasi-two-dimensional C/BN films can be synthesized by means of chemically induced phase transition by connection of the layers of multilayered h-BN/graphene van der Waals heterostructures, which is indicated by the negative phase transition pressure in the calculated phase diagrams (P, T) of the films. It was shown that the band gap value of the C/BN films spans the infrared and visible spectrum. We hope that the proposed films and fabrication method can be considered as a possible route to obtain nanostructures with a controllable band gap in wide energy range. This makes these materials potentially suitable for a variety of applications, including photovoltaics, photoelectronics and more.

10.
Nanotechnology ; 27(36): 365201, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27478999

RESUMEN

Here we present a comprehensive investigation of various novel composite structures based on graphene (G) and molybdenum disulphide (MoS2) monolayers decorated by C60 fullerenes, which can be successfully applied in photovoltaics as a solar cell unit. Theoretical studies of the atomic structure, stability and electronic properties of the proposed G/C60, MoS2/C60 and G/MoS2/C60/G nanostructures were carried out. We show that making the G/MoS2/C60/G heterostructure from the 2D films considered here will lead to the appearance of particular properties suitable for application in photovoltaics due to the broad energetic region of high electronic density of states.

11.
Nanotechnology ; 26(17): 175704, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25835030

RESUMEN

Based on the tight-binding model, we investigate the formation process of quantum dots onto graphene nanoribbons (GNRs) by the sequential adsorption of hydrogen atoms onto the ribbon's surface. We define the difference between hydrogenation processes onto the surface of zigzag (ZGNR) and armchair graphene nanoribbons (AGNR) by calculating the binding energies with respect to the energy of isolated hydrogen atoms for all considered structures.

12.
Nano Lett ; 14(12): 7126-30, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25384500

RESUMEN

Results based on ab initio density functional calculations indicate that cubic diamond, boron nitride, and many other cubic structures including rocksalt share a general graphitization tendency in ultrathin films terminated by close-packed (111) surfaces. Whereas such compounds often show an energy preference for cubic rather than layered atomic arrangements in the bulk, the surface energy of layered systems is commonly lower than that of their cubic counterparts. We determine the critical slab thickness for a range of systems, below which a spontaneous conversion from a cubic to a layered graphitic structure occurs, driven by surface energy reduction in surface-dominated structures.

13.
Nano Lett ; 14(2): 676-81, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24437392

RESUMEN

We explore how a few-layer graphene can undergo phase transformation into thin diamond film under reduced or no pressure, if the process is facilitated by hydrogenation of the surfaces. Such a "chemically induced phase transition" is inherently nanoscale phenomenon, when the surface conditions directly affect thermodynamics, and the transition pressure depends greatly on film thickness. For the first time we obtain, by ab initio computations of the Gibbs free energy, a phase diagram (P, T, h) of quasi-two-dimensional carbon-diamond film versus multilayered graphene. It describes accurately the role of film thickness h and shows the feasibility of creating novel quasi-two-dimensional materials. Further, the role of finite diameter of graphene flakes and possible formation of the diamond films with the (110) surface are described as well.

14.
Nanoscale ; 16(12): 5870-5892, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38450538

RESUMEN

The annual increase in demand for renewable energy is driving the development of catalysis-based technologies that generate, store and convert clean energy by splitting and forming chemical bonds. Thanks to efforts over the last two decades, great progress has been made in the use of core-shell nanostructures to improve the performance of metallic catalysts. The successful preparation and application of a large number of bimetallic core-shell nanocrystals demonstrates the wide range of possibilities they offer and suggests further advances in this field. Here, we have reviewed recent advances in the synthesis and study of core-shell nanostructures that are promising for catalysis. Particular attention has been paid to the structural tuning of the catalytic properties of core-shell nanostructures and to theoretical methods capable of describing their catalytic properties in order to efficiently search for new catalysts with desired properties. We have also identified the most promising areas of research in this field, in terms of experimental and theoretical studies, and in terms of promising materials to be studied.

15.
Sci Rep ; 14(1): 12788, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834596

RESUMEN

Most modern catalysts are based on precious metals and rear-earth elements, making some of organic synthesis reactions economically insolvent. Density functional theory calculations are used here to describe several differently oriented surfaces of the higher tungsten boride WB5-x, together with their catalytic activity for the CO oxidation reaction. Based on our findings, WB5-x appears to be an efficient alternative catalyst for CO oxidation. Calculated surface energies allow the use of the Wulff construction to determine the equilibrium shape of WB5-x particles. It is found that the (010) and (101) facets terminated by boron and tungsten, respectively, are the most exposed surfaces for which the adsorption of different gaseous agents (CO, CO2, H2, N2, O2, NO, NO2, H2O, NH3, SO2) is evaluated to reveal promising prospects for applications. CO oxidation on B-rich (010) and W-rich (101) surfaces is further investigated by analyzing the charge redistribution during the adsorption of CO and O2 molecules. It is found that CO oxidation has relatively low energy barriers. The implications of the present results, the effects of WB5-x on CO oxidation and potential application in the automotive, chemical, and mining industries are discussed.

16.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36839063

RESUMEN

We observed resonance effects in the Raman scattering of nanodiamonds with an average size of 2-5 nm excited at a wavelength of 1064 nm (1.16 eV). The resonant Raman spectrum of the 2-5 nm nanodiamonds consists of bands at wavelengths of 1325 and 1600 cm-1, a band at 1100-1250 cm-1, and a plateau in the range from 1420 to 1630 cm-1. When excited away from the resonance (at a wavelength of 405 nm, 3.1 eV), the Raman spectrum consists of only three bands at 1325, 1500, and 1600 cm-1. It is important to note that the additional lines (1500 and 1600 cm-1) belong to the sp3-hybridized carbon bonds. The phonon density of states for the nanodiamonds (~1 nm) was calculated using moment tensor potentials (MTP), a class of machine-learning interatomic potentials. The presence of these modes in agreement with the lattice dynamics indicates the existence of bonds with force constants higher than in single-crystal diamonds. The observed resonant phenomena of the Raman scattering and the increase in the bulk modulus are explained by the presence of Tamm states with an energy of electronic transitions of approximately 1 eV, previously observed on the surface of single-crystal diamonds.

17.
ACS Appl Mater Interfaces ; 15(12): 16317-16326, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926821

RESUMEN

Ultrathin diamond films, or diamanes, are promising quasi-2D materials that are characterized by high stiffness, extreme wear resistance, high thermal conductivity, and chemical stability. Surface functionalization of multilayer graphene with different stackings of layers could be an interesting opportunity to induce proper electronic properties into diamanes. Combination of these electronic properties together with extraordinary mechanical ones will lead to their applications as field-emission displays substituting original devices with light-emitting diodes or organic light-emitting diodes. In the present study, we focus on the electronic properties of fluorinated and hydrogenated diamanes with (111), (110), (0001), (101̅0), and (2̅110) crystallographic orientations of surfaces of various thicknesses by using first-principles calculations and Bader analysis of electron density. We see that fluorine induces an occupied surface electronic state, while hydrogen modifies the occupied bulk state and also induces unoccupied surface states. Furthermore, a lower number of layers is necessary for hydrogenated diamanes to achieve the convergence of the work function in comparison with fluorinated diamanes, with the exception of fluorinated (110) and (2̅110) films that achieve rapid convergence and have the same behavior as other hydrogenated surfaces. This induces a modification of the work function with an increase of the number of layers that makes hydrogenated (2̅110) diamanes the most suitable surface for field-emission displays, better than the fluorinated counterparts. In addition, a quasi-quantitative descriptor of surface dipole moment based on the Tantardini-Oganov electronegativity scale is introduced as the average of bond dipole moments between the surface atoms. This new fundamental descriptor is capable of predicting a priori the bond dipole moment and may be considered as a new useful feature for crystal structure prediction based on artificial intelligence.

18.
Adv Sci (Weinh) ; 10(30): e2303622, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37626451

RESUMEN

The chemical interaction of Sn with H2 by X-ray diffraction methods at pressures of 180-210 GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below TC  = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2 , and C2-Sn12 H18 , is also detected. The temperature dependence of critical current density JC (T) in SnH4 yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field BC2 (T) ∝ (TC - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.

19.
Materials (Basel) ; 15(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35591680

RESUMEN

Computational methods are increasingly used to support interpreting, assigning and predicting the solid-state nuclear resonance magnetic spectra of materials. Currently, density functional theory is seen to achieve a good balance between efficiency and accuracy in solid-state chemistry. To be specific, density functional theory allows the assignment of signals in nuclear resonance magnetic spectra to specific sites and can help identify overlapped or missing signals from experimental nuclear resonance magnetic spectra. To avoid the difficulties correlated to all-electron calculations, a gauge including the projected augmented wave method was introduced to calculate nuclear resonance magnetic parameters with great success in organic crystals in the last decades. Thus, we developed a gauge including projected augmented pseudopotentials of 21 d elements and tested them on, respectively, oxides or nitrides (semiconductors), calculating chemical shift and quadrupolar coupling constant. This work can be considered the first step to improving the ab initio prediction of nuclear magnetic resonance parameters, and leaves open the possibility for inorganic compounds to constitute an alternative standard compound, with respect to tetramethylsilane, to calculate the chemical shift. Furthermore, this work represents the possibility to obtain results from first-principles calculations, to train a machine-learning model to solve or refine structures using predicted nuclear magnetic resonance spectra.

20.
Membranes (Basel) ; 12(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36295684

RESUMEN

Ultra-thin diamond membranes, diamanes, are one of the most intriguing quasi-2D films, combining unique mechanical, electronic and optical properties. At present, diamanes have been obtained from bi- or few-layer graphene in AA- and AB-stacking by full hydrogenation or fluorination. Here, we study the thermal conductivity of diamanes obtained from bi-layer graphene with twist angle θ between layers forming a Moiré pattern. The combination of DFT calculations and machine learning interatomic potentials makes it possible to perform calculations of the lattice thermal conductivity of such diamanes with twist angles θ of 13.2∘, 21.8∘ and 27.8∘ using the solution of the phonon Boltzmann transport equation. Obtained results show that Moiré diamanes exhibit a wide variety of thermal properties depending on the twist angle, namely a sharp decrease in thermal conductivity from high for "untwisted" diamanes to ultra-low values when the twist angle tends to 30∘, especially for hydrogenated Moiré diamanes. This effect is associated with high anharmonicity and scattering of phonons related to a strong symmetry breaking of the atomic structure of Moiré diamanes compared with untwisted ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA