Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(27): 9941-6, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958891

RESUMEN

Rett Syndrome is a neurodevelopmental disorder that arises from mutations in the X-linked gene methyl-CpG binding protein 2 (MeCP2). MeCP2 has a large number of targets and a wide range of functions, suggesting the hypothesis that functional signaling mechanisms upstream of synaptic and circuit maturation may contribute to our understanding of the disorder and provide insight into potential treatment. Here, we show that insulin-like growth factor-1 (IGF1) levels are reduced in young male Mecp2-null (Mecp2(-/y)) mice, and systemic treatment with recombinant human IGF1 (rhIGF1) improves lifespan, locomotor activity, heart rate, respiration patterns, and social and anxiety behavior. Furthermore, Mecp2-null mice treated with rhIGF1 show increased synaptic and activated signaling pathway proteins, enhanced cortical excitatory synaptic transmission, and restored dendritic spine densities. IGF1 levels are also reduced in older, fully symptomatic heterozygous (Mecp2(-/+)) female mice, and short-term treatment with rhIGF1 in these animals improves respiratory patterns, reduces anxiety levels, and increases exploratory behavior. In addition, rhIGF1 treatment normalizes abnormally prolonged plasticity in visual cortex circuits of adult Mecp2(-/+) female mice. Our results provide characterization of the phenotypic development of Rett Syndrome in a mouse model at the molecular, circuit, and organismal levels and demonstrate a mechanism-based therapeutic role for rhIGF1 in treating Rett Syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Síndrome de Rett/tratamiento farmacológico , Animales , Conducta Animal , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Respiración , Síndrome de Rett/genética , Transducción de Señal , Corteza Visual/efectos de los fármacos , Corteza Visual/fisiopatología
2.
Proc Natl Acad Sci U S A ; 108(52): 21241-6, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22160721

RESUMEN

Unbalanced visual input during development induces persistent alterations in the function and structure of visual cortical neurons. The molecular mechanisms that drive activity-dependent changes await direct visualization of underlying signals at individual synapses in vivo. By using a genetically engineered Förster resonance energy transfer (FRET) probe for the detection of CaMKII activity, and two-photon imaging of single synapses within identified functional domains, we have revealed unexpected and differential mechanisms in specific subsets of synapses in vivo. Brief monocular deprivation leads to activation of CaMKII in most synapses of layer 2/3 pyramidal cells within deprived eye domains, despite reduced visual drive, but not in nondeprived eye domains. Synapses that are eliminated in deprived eye domains have low basal CaMKII activity, implying a protective role for activated CaMKII against synapse elimination.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Sinapsis/enzimología , Corteza Visual/fisiología , Animales , Línea Celular , Predominio Ocular/fisiología , Activación Enzimática/fisiología , Hurones , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Estimulación Luminosa , Privación Sensorial/fisiología , Sinapsis/fisiología , Visión Monocular/fisiología , Corteza Visual/enzimología
3.
Biochem Biophys Res Commun ; 369(2): 519-25, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18302935

RESUMEN

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/genética , Riñón/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Técnicas de Sonda Molecular , Línea Celular , Humanos
4.
Front Neural Circuits ; 7: 163, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24133415

RESUMEN

Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Plasticidad Neuronal/fisiología , Animales , Proteínas Fluorescentes Verdes
5.
Cell Stem Cell ; 13(4): 446-58, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24094325

RESUMEN

Rett syndrome (RTT) is caused by mutations of MECP2, a methyl CpG binding protein thought to act as a global transcriptional repressor. Here we show, using an isogenic human embryonic stem cell model of RTT, that MECP2 mutant neurons display key molecular and cellular features of this disorder. Unbiased global gene expression analyses demonstrate that MECP2 functions as a global activator in neurons but not in neural precursors. Decreased transcription in neurons was coupled with a significant reduction in nascent protein synthesis and lack of MECP2 was manifested as a severe defect in the activity of the AKT/mTOR pathway. Lack of MECP2 also leads to impaired mitochondrial function in mutant neurons. Activation of AKT/mTOR signaling by exogenous growth factors or by depletion of PTEN boosted protein synthesis and ameliorated disease phenotypes in mutant neurons. Our findings indicate a vital function for MECP2 in maintaining active gene transcription in human neuronal cells.


Asunto(s)
Células Madre Embrionarias/patología , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/patología , Biosíntesis de Proteínas/genética , Síndrome de Rett/genética , Síndrome de Rett/patología , Transcripción Genética/genética , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Mutación , Neuronas/metabolismo
6.
Cell Stem Cell ; 11(1): 75-90, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22770242

RESUMEN

Although human induced pluripotent stem cells (hiPSCs) have enormous potential in regenerative medicine, their epigenetic variability suggests that some lines may not be suitable for human therapy. There are currently few benchmarks for assessing quality. Here we show that X-inactivation markers can be used to separate hiPSC lines into distinct epigenetic classes and that the classes are phenotypically distinct. Loss of XIST expression is strongly correlated with upregulation of X-linked oncogenes, accelerated growth rate in vitro, and poorer differentiation in vivo. Whereas differences in X-inactivation potential result in epigenetic variability of female hiPSC lines, male hiPSC lines generally resemble each other and do not overexpress the oncogenes. Neither physiological oxygen levels nor HDAC inhibitors offer advantages to culturing female hiPSC lines. We conclude that female hiPSCs may be epigenetically less stable in culture and caution that loss of XIST may result in qualitatively less desirable stem cell lines.


Asunto(s)
Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias/genética , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias/genética , Caracteres Sexuales , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Cromosomas Humanos X/genética , Femenino , Genoma Humano/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Ratones , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxígeno/farmacología , ARN Largo no Codificante , ARN no Traducido/genética , ARN no Traducido/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Inactivación del Cromosoma X/efectos de los fármacos , Inactivación del Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA