Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Internet Res ; 24(7): e37928, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896020

RESUMEN

BACKGROUND: A clinical decision support system (CDSS) is recognized as a technology that enhances clinical efficacy and safety. However, its full potential has not been realized, mainly due to clinical data standards and noninteroperable platforms. OBJECTIVE: In this paper, we introduce the common data model-based intelligent algorithm network environment (CANE) platform that supports the implementation and deployment of a CDSS. METHODS: CDSS reasoning engines, usually represented as R or Python objects, are deployed into the CANE platform and converted into C# objects. When a clinician requests CANE-based decision support in the electronic health record (EHR) system, patients' information is transformed into Health Level 7 Fast Healthcare Interoperability Resources (FHIR) format and transmitted to the CANE server inside the hospital firewall. Upon receiving the necessary data, the CANE system's modules perform the following tasks: (1) the preprocessing module converts the FHIRs into the input data required by the specific reasoning engine, (2) the reasoning engine module operates the target algorithms, (3) the integration module communicates with the other institutions' CANE systems to request and transmit a summary report to aid in decision support, and (4) creates a user interface by integrating the summary report and the results calculated by the reasoning engine. RESULTS: We developed a CANE system such that any algorithm implemented in the system can be directly called through the RESTful application programming interface when it is integrated with an EHR system. Eight algorithms were developed and deployed in the CANE system. Using a knowledge-based algorithm, physicians can screen patients who are prone to sepsis and obtain treatment guides for patients with sepsis with the CANE system. Further, using a nonknowledge-based algorithm, the CANE system supports emergency physicians' clinical decisions about optimum resource allocation by predicting a patient's acuity and prognosis during triage. CONCLUSIONS: We successfully developed a common data model-based platform that adheres to medical informatics standards and could aid artificial intelligence model deployment using R or Python.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Sepsis , Inteligencia Artificial , Registros Electrónicos de Salud , Estándar HL7 , Humanos , Bases del Conocimiento
2.
J Korean Med Sci ; 37(16): e122, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35470597

RESUMEN

BACKGROUND: The quick sequential organ failure assessment (qSOFA) score is suggested to use for screening patients with a high risk of clinical deterioration in the general wards, which could simply be regarded as a general early warning score. However, comparison of unselected admissions to highlight the benefits of introducing qSOFA in hospitals already using Modified Early Warning Score (MEWS) remains unclear. We sought to compare qSOFA with MEWS for predicting clinical deterioration in general ward patients regardless of suspected infection. METHODS: The predictive performance of qSOFA and MEWS for in-hospital cardiac arrest (IHCA) or unexpected intensive care unit (ICU) transfer was compared with the areas under the receiver operating characteristic curve (AUC) analysis using the databases of vital signs collected from consecutive hospitalized adult patients over 12 months in five participating hospitals in Korea. RESULTS: Of 173,057 hospitalized patients included for analysis, 668 (0.39%) experienced the composite outcome. The discrimination for the composite outcome for MEWS (AUC, 0.777; 95% confidence interval [CI], 0.770-0.781) was higher than that for qSOFA (AUC, 0.684; 95% CI, 0.676-0.686; P < 0.001). In addition, MEWS was better for prediction of IHCA (AUC, 0.792; 95% CI, 0.781-0.795 vs. AUC, 0.640; 95% CI, 0.625-0.645; P < 0.001) and unexpected ICU transfer (AUC, 0.767; 95% CI, 0.760-0.773 vs. AUC, 0.716; 95% CI, 0.707-0.718; P < 0.001) than qSOFA. Using the MEWS at a cutoff of ≥ 5 would correctly reclassify 3.7% of patients from qSOFA score ≥ 2. Most patients met MEWS ≥ 5 criteria 13 hours before the composite outcome compared with 11 hours for qSOFA score ≥ 2. CONCLUSION: MEWS is more accurate that qSOFA score for predicting IHCA or unexpected ICU transfer in patients outside the ICU. Our study suggests that qSOFA should not replace MEWS for identifying patients in the general wards at risk of poor outcome.


Asunto(s)
Deterioro Clínico , Puntuación de Alerta Temprana , Sepsis , Adulto , Humanos , Puntuaciones en la Disfunción de Órganos , Habitaciones de Pacientes , Estudios Retrospectivos , Sepsis/diagnóstico
3.
Korean J Physiol Pharmacol ; 26(3): 195-205, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35477547

RESUMEN

Determining blood loss [100% - RBV (%)] is challenging in the management of haemorrhagic shock. We derived an equation estimating RBV (%) via serial haematocrits (Hct1, Hct2) by fixing infused crystalloid fluid volume (N) as [0.015 × body weight (g)]. Then, we validated it in vivo. Mathematically, the following estimation equation was derived: RBV (%) = 24k / [(Hct1 / Hct2) - 1]. For validation, nonongoing haemorrhagic shock was induced in Sprague-Dawley rats by withdrawing 20.0%-60.0% of their total blood volume (TBV) in 5.0% intervals (n = 9). Hct1 was checked after 10 min and normal saline N cc was infused over 10 min. Hct2 was checked five minutes later. We applied a linear equation to explain RBV (%) with 1 / [(Hct1 / Hct2) - 1]. Seven rats losing 30.0%-60.0% of their TBV suffered shock persistently. For them, RBV (%) was updated as 5.67 / [(Hct1 / Hct2) - 1] + 32.8 (95% confidence interval [CI] of the slope: 3.14-8.21, p = 0.002, R2 = 0.87). On a Bland-Altman plot, the difference between the estimated and actual RBV was 0.00 ± 4.03%; the 95% CIs of the limits of agreements were included within the pre-determined criterion of validation (< 20%). For rats suffering from persistent, non-ongoing haemorrhagic shock, we derived and validated a simple equation estimating RBV (%). This enables the calculation of blood loss via information on serial haematocrits under a fixed N. Clinical validation is required before utilisation for emergency care of haemorrhagic shock.

4.
Ann Noninvasive Electrocardiol ; 26(3): e12839, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33719135

RESUMEN

INTRODUCTION: The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. METHODS AND RESULTS: This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12-lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. CONCLUSION: The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.


Asunto(s)
Inteligencia Artificial , Electrocardiografía/métodos , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Desequilibrio Hidroelectrolítico/diagnóstico
5.
J Electrocardiol ; 67: 124-132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225095

RESUMEN

BACKGROUND: Early detection and intervention is the cornerstone for appropriate treatment of arrhythmia and prevention of complications and mortality. Although diverse deep learning models have been developed to detect arrhythmia, they have been criticized due to their unexplainable nature. In this study, we developed an explainable deep learning model (XDM) to classify arrhythmia, and validated its performance using diverse external validation data. METHODS: In this retrospective study, the Sejong dataset comprising 86,802 electrocardiograms (ECGs) was used to develop and internally variate the XDM. The XDM based on a neural network-backed ensemble tree was developed with six feature modules that are able to explain the reasons for its decisions. The model was externally validated using data from 36,961 ECGs from four non-restricted datasets. RESULTS: During internal and external validation of the XDM, the average area under the receiver operating characteristic curves (AUCs) using a 12­lead ECG for arrhythmia classification were 0.976 and 0.966, respectively. The XDM outperformed a previous simple multi-classification deep learning model that used the same method. During internal and external validation, the AUCs of explainability were 0.925-0.991. CONCLUSION: Our XDM successfully classified arrhythmia using diverse formats of ECGs and could effectively describe the reason for the decisions. Therefore, an explainable deep learning methodology could improve accuracy compared to conventional deep learning methods, and that the transparency of XDM can be enhanced for its application in clinical practice.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Arritmias Cardíacas/diagnóstico , Electrocardiografía , Humanos , Estudios Retrospectivos
6.
Pediatr Emerg Care ; 37(12): e988-e994, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268962

RESUMEN

BACKGROUND AND OBJECTIVES: Emergency department (ED) overcrowding is a national crisis in which pediatric patients are often prioritized at lower levels. Because the prediction of prognosis for pediatric patients is important but difficult, we developed and validated a deep learning algorithm to predict the need for critical care in pediatric EDs. METHODS: We conducted a retrospective observation cohort study using data from the Korean National Emergency Department Information System, which collected data in real time from 151 EDs. The study subjects were pediatric patients who visited EDs from 2014 to 2016. The data were divided by date into derivation and test data. The primary end point was critical care, and the secondary endpoint was hospitalization. We used age, sex, chief complaint, symptom onset to arrival time, arrival mode, trauma, and vital signs as predicted variables. RESULTS: The study subjects consisted of 2,937,078 pediatric patients of which 18,253 were critical care and 375,078 were hospitalizations. For critical care, the area under the receiver operating characteristics curve of the deep learning algorithm was 0.908 (95% confidence interval, 0.903-0.910). This result significantly outperformed that of the pediatric early warning score (0.812 [0.803-0.819]), conventional triage and acuity system (0.782 [0.773-0.790]), random forest (0.881 [0.874-0.890]), and logistic regression (0.851 [0.844-0.858]). For hospitalization, the deep-learning algorithm (0.782 [0.780-0.783]) significantly outperformed the other methods. CONCLUSIONS: The deep learning algorithm predicted the critical care and hospitalization of pediatric ED patients more accurately than the conventional early warning score, triage tool, and machine learning methods.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Niño , Estudios de Cohortes , Cuidados Críticos , Servicio de Urgencia en Hospital , Hospitalización , Humanos , Estudios Retrospectivos , Triaje
7.
Crit Care Med ; 48(11): e1106-e1111, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32947466

RESUMEN

OBJECTIVES: A deep learning-based early warning system is proposed to predict sepsis prior to its onset. DESIGN: A novel algorithm was devised to detect sepsis 6 hours prior to its onset based on electronic medical records. SETTING: Retrospective cohorts from three separate hospitals are used in this study. Sepsis onset was defined based on Sepsis-3. Algorithms are evaluated based on the score function used in the Physionet Challenge 2019. PATIENTS: Over 60,000 ICU patients with 40 clinical variables (vital signs, laboratory results) for each hour of a patient's ICU stay were used. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The proposed algorithm predicted the onset of sepsis in the preceding n hours (where n = 4, 6, 8, or 12). Furthermore, the proposed method compared how many sepsis patients can be predicted in a short time with other methods. To interpret a given result in a clinical perspective, the relationship between input variables and the probability of the proposed method were presented. The proposed method achieved superior results (area under the receiver operating characteristic curve, area under the precision-recall curve, and score) and predicted more sepsis patients in advance. In official phase, the proposed method showed the utility score of -0.101, area under the receiver operating characteristic curve 0.782, area under the precision-recall curve 0.041, accuracy 0.786, and F-measure 0.046. CONCLUSIONS: Using Physionet Challenge 2019, the proposed method can accurately and early predict the onset of sepsis. The proposed method can be a practical early warning system in the environment of real hospitals.


Asunto(s)
Registros Electrónicos de Salud/estadística & datos numéricos , Sepsis/diagnóstico , Algoritmos , Aprendizaje Profundo , Puntuación de Alerta Temprana , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Modelos Estadísticos , Redes Neurales de la Computación , Curva ROC , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sepsis/etiología , Sepsis/patología , Signos Vitales
8.
Crit Care Med ; 48(4): e285-e289, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205618

RESUMEN

OBJECTIVES: As the performance of a conventional track and trigger system in a rapid response system has been unsatisfactory, we developed and implemented an artificial intelligence for predicting in-hospital cardiac arrest, denoted the deep learning-based early warning system. The purpose of this study was to compare the performance of an artificial intelligence-based early warning system with that of conventional methods in a real hospital situation. DESIGN: Retrospective cohort study. SETTING: This study was conducted at a hospital in which deep learning-based early warning system was implemented. PATIENTS: We reviewed the records of adult patients who were admitted to the general ward of our hospital from April 2018 to March 2019. INTERVENTIONS: The study population included 8,039 adult patients. A total 83 events of deterioration occurred during the study period. The outcome was events of deterioration, defined as cardiac arrest and unexpected ICU admission. We defined a true alarm as an alarm occurring within 0.5-24 hours before a deteriorating event. MEASUREMENTS AND MAIN RESULTS: We used the area under the receiver operating characteristic curve, area under the precision-recall curve, number needed to examine, and mean alarm count per day as comparative measures. The deep learning-based early warning system (area under the receiver operating characteristic curve, 0.865; area under the precision-recall curve, 0.066) outperformed the modified early warning score (area under the receiver operating characteristic curve, 0.682; area under the precision-recall curve, 0.010) and reduced the number needed to examine and mean alarm count per day by 69.2% and 59.6%, respectively. At the same specificity, deep learning-based early warning system had up to 257% higher sensitivity than conventional methods. CONCLUSIONS: The developed artificial intelligence based on deep-learning, deep learning-based early warning system, accurately predicted deterioration of patients in a general ward and outperformed conventional methods. This study showed the potential and effectiveness of artificial intelligence in an rapid response system, which can be applied together with electronic health records. This will be a useful method to identify patients with deterioration and help with precise decision-making in daily practice.


Asunto(s)
Inteligencia Artificial , Deterioro Clínico , Enfermedad Crítica , Equipo Hospitalario de Respuesta Rápida/organización & administración , Signos Vitales , Adulto , Algoritmos , Femenino , Paro Cardíaco/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Medición de Riesgo/métodos
9.
Europace ; 22(3): 412-419, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800031

RESUMEN

AIMS: Although left ventricular hypertrophy (LVH) has a high incidence and clinical importance, the conventional diagnosis criteria for detecting LVH using electrocardiography (ECG) has not been satisfied. We aimed to develop an artificial intelligence (AI) algorithm for detecting LVH. METHODS AND RESULTS: This retrospective cohort study involved the review of 21 286 patients who were admitted to two hospitals between October 2016 and July 2018 and underwent 12-lead ECG and echocardiography within 4 weeks. The patients in one hospital were divided into a derivation and internal validation dataset, while the patients in the other hospital were included in only an external validation dataset. An AI algorithm based on an ensemble neural network (ENN) combining convolutional and deep neural network was developed using the derivation dataset. And we visualized the ECG area that the AI algorithm used to make the decision. The area under the receiver operating characteristic curve of the AI algorithm based on ENN was 0.880 (95% confidence interval 0.877-0.883) and 0.868 (0.865-0.871) during the internal and external validations. These results significantly outperformed the cardiologist's clinical assessment with Romhilt-Estes point system and Cornell voltage criteria, Sokolov-Lyon criteria, and interpretation of ECG machine. At the same specificity, the AI algorithm based on ENN achieved 159.9%, 177.7%, and 143.8% higher sensitivities than those of the cardiologist's assessment, Sokolov-Lyon criteria, and interpretation of ECG machine. CONCLUSION: An AI algorithm based on ENN was highly able to detect LVH and outperformed cardiologists, conventional methods, and other machine learning techniques.


Asunto(s)
Inteligencia Artificial , Hipertrofia Ventricular Izquierda , Ecocardiografía , Electrocardiografía , Humanos , Hipertrofia Ventricular Izquierda/diagnóstico , Estudios Retrospectivos
10.
J Electrocardiol ; 59: 151-157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32146201

RESUMEN

BACKGROUND: Screening and early diagnosis of mitral regurgitation (MR) are crucial for preventing irreversible progression of MR. In this study, we developed and validated an artificial intelligence (AI) algorithm for detecting MR using electrocardiography (ECG). METHODS: This retrospective cohort study included data from two hospital. An AI algorithm was trained using 56,670 ECGs from 24,202 patients. Internal validation of the algorithm was performed with 3174 ECGs of 3174 patients from one hospital, while external validation was performed with 10,865 ECGs of 10,865 patients from another hospital. The endpoint was the diagnosis of significant MR, moderate to severe, confirmed by echocardiography. We used 500 Hz ECG raw data as predictive variables. Additionally, we showed regions of ECG that have the most significant impact on the decision-making of the AI algorithm using a sensitivity map. RESULTS: During the internal and external validation, the area under the receiver operating characteristic curve of the AI algorithm using a 12-lead ECG for detecting MR was 0.816 and 0.877, respectively, while that using a single-lead ECG was 0.758 and 0.850, respectively. In the 3157 non-MR individuals, those patients that the AI defined as high risk had a significantly higher chance of development of MR than the low risk group (13.9% vs. 2.6%, p < 0.001) during the follow-up period. The sensitivity map showed the AI algorithm focused on the P-wave and T-wave for MR patients and QRS complex for non-MR patients. CONCLUSIONS: The proposed AI algorithm demonstrated promising results for MR detecting using 12-lead and single-lead ECGs.


Asunto(s)
Aprendizaje Profundo , Insuficiencia de la Válvula Mitral , Inteligencia Artificial , Electrocardiografía , Humanos , Insuficiencia de la Válvula Mitral/diagnóstico , Estudios Retrospectivos
11.
Echocardiography ; 36(2): 213-218, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30515886

RESUMEN

BACKGROUND: Heart disease (HD) is the leading cause of global death; there are several mortality prediction models of HD for identifying critically-ill patients and for guiding decision making. The existing models, however, cannot be used during initial treatment or screening. This study aimed to derive and validate an echocardiography-based mortality prediction model for HD using deep learning (DL). METHODS: In this multicenter retrospective cohort study, the subjects were admitted adult (age ≥ 18 years) HD patients who underwent echocardiography. The outcome was in-hospital mortality. We extracted predictor variables from echocardiography reports using text mining. We developed deep learning-based prediction model using derivation data of a hospital A. And we conducted external validation using echocardiography report of hospital B. We conducted subgroup analysis of coronary heart disease (CHD) and heart failure (HF) patients of hospital B and compared DL with the currently used predictive models (eg, Global Registry of Acute Coronary Events (GRACE) score, Thrombolysis in Myocardial Infarction score (TIMI), Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score, and Get With The Guidelines-Heart Failure (GWTG-HF) score). RESULTS: The study subjects comprised 25 776 patients with 1026 mortalities. The areas under the receiver operating characteristic curve (AUROC) of the DL model were 0.912, 0.898, 0.958, and 0.913 for internal validation, external validation, CHD, and HF, respectively, and these results significantly outperformed other comparison models. CONCLUSIONS: This echocardiography-based deep learning model predicted in-hospital mortality among HD patients more accurately than existing prediction models and other machine learning models.


Asunto(s)
Aprendizaje Profundo , Ecocardiografía/métodos , Cardiopatías/diagnóstico por imagen , Cardiopatías/mortalidad , Mortalidad Hospitalaria , Anciano , Estudios de Cohortes , Femenino , Corazón , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
13.
Heliyon ; 10(10): e31000, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826743

RESUMEN

Objective: Most prognostic indexes for ischemic stroke mortality lack radiologic information. We aimed to create and validate a deep learning-based mortality prediction model using brain diffusion weighted imaging (DWI), apparent diffusion coefficient (ADC), and clinical factors. Methods: Data from patients with ischemic stroke who admitted to tertiary hospital during acute periods from 2013 to 2019 were collected and split into training (n = 1109), validation (n = 437), and internal test (n = 654). Data from patients from secondary cardiovascular center was used for external test set (n = 507). The algorithm for predicting mortality, based on DWI and ADC (DLP_DWI), was initially trained. Subsequently, important clinical factors were integrated into this model to create the integrated model (DLP_INTG). The performance of DLP_DWI and DLP_INTG was evaluated by using time-dependent area under the receiver operating characteristic curves (TD AUCs) and Harrell concordance index (C-index) at one-year mortality. Results: The TD AUC of DLP_DWI was 0.643 in internal test set, and 0.785 in the external dataset. DLP_INTG had a higher performance at predicting one-year mortality than premise score in internal dataset (TD- AUC: 0.859 vs. 0.746; p = 0.046), and in external dataset (TD- AUC: 0.876 vs. 0.808; p = 0.007). DLP_DWI and DLP_INTG exhibited strong discrimination for the high-risk group for one-year mortality. Interpretation: A deep learning model using brain DWI, ADC and the clinical factors was capable of predicting mortality in patients with ischemic stroke.

14.
Intern Med ; 63(6): 773-780, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37558487

RESUMEN

Objective Contrast agents used for radiological examinations are an important cause of acute kidney injury (AKI). We developed and validated a machine learning and clinical scoring prediction model to stratify the risk of contrast-induced nephropathy, considering the limitations of current classical and machine learning models. Methods This retrospective study included 38,481 percutaneous coronary intervention cases from 23,703 patients in a tertiary hospital. We divided the cases into development and internal test sets (8:2). Using the development set, we trained a gradient boosting machine prediction model (complex model). We then developed a simple model using seven variables based on variable importance. We validated the performance of the models using an internal test set and tested them externally in two other hospitals. Results The complex model had the best area under the receiver operating characteristic (AUROC) curve at 0.885 [95% confidence interval (CI) 0.876-0.894] in the internal test set and 0.837 (95% CI 0.819-0.854) and 0.850 (95% CI 0.781-0.918) in two different external validation sets. The simple model showed an AUROC of 0.795 (95% CI 0.781-0.808) in the internal test set and 0.766 (95% CI 0.744-0.789) and 0.782 (95% CI 0.687-0.877) in the two different external validation sets. This was higher than the value in the well-known scoring system (Mehran criteria, AUROC=0.67). The seven precatheterization variables selected for the simple model were age, known chronic kidney disease, hematocrit, troponin I, blood urea nitrogen, base excess, and N-terminal pro-brain natriuretic peptide. The simple model is available at http://52.78.230.235:8081/Conclusions We developed an AKI prediction machine learning model with reliable performance. This can aid in bedside clinical decision making.


Asunto(s)
Lesión Renal Aguda , Toma de Decisiones Clínicas , Humanos , Medición de Riesgo/métodos , Estudios Retrospectivos , Aprendizaje Automático , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico
15.
Clin Exp Emerg Med ; 10(4): 438-445, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38012820

RESUMEN

OBJECTIVE: Based on the development of artificial intelligence (AI), an emerging number of methods have achieved outstanding performances in the diagnosis of acute myocardial infarction (AMI) using an electrocardiogram (ECG). However, AI-ECG analysis using a multicenter prospective design for detecting AMI has yet to be conducted. This prospective multicenter observational study aims to validate an AI-ECG model for detecting AMI in patients visiting the emergency department. METHODS: Approximately 9,000 adult patients with chest pain and/or equivalent symptoms of AMI will be enrolled in 18 emergency medical centers in Korea. The AI-ECG analysis algorithm we developed and validated will be used in this study. The primary endpoint is the diagnosis of AMI on the day of visiting the emergency center, and the secondary endpoint is a 30-day major adverse cardiac event. From March 2022, patient registration has begun at centers approved by the institutional review board. DISCUSSION: This is the first prospective study designed to identify the efficacy of an AI-based 12-lead ECG analysis algorithm for diagnosing AMI in emergency departments across multiple centers. This study may provide insights into the utility of deep learning in detecting AMI on electrocardiograms in emergency departments. Trial registration ClinicalTrials.gov identifier: NCT05435391. Registered on June 28, 2022.

16.
Korean Circ J ; 53(11): 758-771, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37973386

RESUMEN

BACKGROUND AND OBJECTIVES: Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients. METHODS: A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF. RESULTS: A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850-0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF, C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906. CONCLUSIONS: The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

17.
Am J Obstet Gynecol MFM ; 5(12): 101184, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37863197

RESUMEN

BACKGROUND: Peripartum cardiomyopathy, one of the most fatal conditions during delivery, results in heart failure secondary to left ventricular systolic dysfunction. Left ventricular dysfunction can result in abnormalities in electrocardiography. However, the usefulness of electrocardiography in the identification of peripartum cardiomyopathy in pregnant women remains unclear. OBJECTIVE: This study aimed to evaluate the effectiveness of a 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device for screening peripartum cardiomyopathy. STUDY DESIGN: This retrospective cohort study included pregnant women who underwent transthoracic echocardiography between a month before and 5 months after delivery and underwent 12-lead electrocardiography within 30 days of echocardiography between December 2011 and May 2022 at Seoul National University Hospital. The performance of 12-lead electrocardiography-based artificial intelligence/machine learning analysis (AiTiALVSD software; version 1.00.00, which was developed to screen for left ventricular systolic dysfunction in the general population) was evaluated for the identification of peripartum cardiomyopathy. In addition, the performance of another artificial intelligence/machine learning algorithm using only 1-lead electrocardiography to detect left ventricular systolic dysfunction was evaluated in identifying peripartum cardiomyopathy. The results were obtained under a 95% confidence interval and considered significant when P<.05. RESULTS: Among the 14,557 women who delivered during the study period, 204 (1.4%) underwent transthoracic echocardiography a month before and 5 months after delivery. Among them, 12 (5.8%) were diagnosed with peripartum cardiomyopathy. The results showed that AiTiALVSD for 12-lead electrocardiography was highly effective in detecting peripartum cardiomyopathy, with an area under the receiver operating characteristic of 0.979 (95% confidence interval, 0.953-1.000), an area under the precision-recall curve of 0.715 (95% confidence interval, 0.499-0.951), a sensitivity of 0.917 (95% confidence interval, 0.760-1.000), a specificity of 0.927 (95% confidence interval, 0.890-0.964), a positive predictive value of 0.440 (95% confidence interval, 0.245-0.635), and a negative predictive value of 0.994 (95% confidence interval, 0.983-1.000). In addition, a 1-lead (lead I) artificial intelligence/machine learning algorithm showed excellent performance; the area under the receiver operating characteristic, area under the precision-recall curve, sensitivity, specificity, positive predictive value, and negative predictive value were 0.944 (95% confidence interval, 0.895-0.993), 0.520 (95% confidence interval, 0.319-0.801), 0.833 (95% confidence interval, 0.622-1.000), 0.880 (95% confidence interval, 0.834-0.926), 0.303 (95% confidence interval, 0.146-0.460), and 0.988 (95% confidence interval, 0.972-1.000), respectively. CONCLUSION: The 12-lead electrocardiography-based artificial intelligence/machine learning-based software as a medical device (AiTiALVSD) and 1-lead algorithm are noninvasive and effective ways of identifying cardiomyopathies occurring during the peripartum period, and they could potentially be used as highly sensitive screening tools for peripartum cardiomyopathy.


Asunto(s)
Cardiomiopatías , Aprendizaje Profundo , Disfunción Ventricular Izquierda , Humanos , Femenino , Embarazo , Función Ventricular Izquierda , Volumen Sistólico , Estudios Retrospectivos , Inteligencia Artificial , Periodo Periparto , Electrocardiografía , Cardiomiopatías/diagnóstico , Cardiomiopatías/etiología , Disfunción Ventricular Izquierda/diagnóstico , Disfunción Ventricular Izquierda/epidemiología
18.
Int J Cardiol ; 352: 72-77, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122911

RESUMEN

BACKGROUND: Peripartum cardiomyopathy (PPCM) is a fatal maternal complication, with left ventricular systolic dysfunction (LVSD; Left ventricular ejection fraction 45% or less) occurring at the end of pregnancy or in the months following delivery. The scarcity of screening tools for PPCM leads to a delayed diagnosis and increases its mortality and morbidity. We aim to evaluate an electrocardiogram (ECG)-deep learning model (DLM) for detecting cardiomyopathy in the peripartum period. METHODS: For the DLM development and internal performance test for detecting LVSD, we obtained a dataset of 122,733 ECG-echocardiography pairs from 58,530 male and female patients from two community hospitals. For the DLM external validation, this study included 271 ECG-echocardiography pairs (157 unique pregnant and postpartum period women) examined in the Ajou University Medical Center (AUMC) between January 2007 and May 2020. All included cases underwent an ECG within two weeks before or after the day of transthoracic echocardiography, which was performed within a month before delivery, or within five months after delivery. Based on the diagnostic criteria of PPCM, we analyzed the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) to evaluate the model effectiveness. RESULTS: The ECG-based DLM detected PPCM with an AUROC of 0.877. Moreover, its sensitivity, specificity, PPV, and NPV for the detection of PPCM were 0.877, 0.833, 0.809, 0.352, and 0.975, respectively. CONCLUSIONS: An ECG-based DLM non-invasively and effectively detects cardiomyopathies occurring in the peripartum period and could be an ideal screening tool for PPCM.


Asunto(s)
Cardiomiopatías , Complicaciones Cardiovasculares del Embarazo , Inteligencia Artificial , Cardiomiopatías/diagnóstico por imagen , Electrocardiografía , Femenino , Humanos , Masculino , Periodo Periparto , Embarazo , Complicaciones Cardiovasculares del Embarazo/diagnóstico , Volumen Sistólico , Función Ventricular Izquierda
19.
Diagnostics (Basel) ; 12(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328207

RESUMEN

BACKGROUND: We developed and validated an artificial intelligence (AI)-enabled smartwatch ECG to detect heart failure-reduced ejection fraction (HFrEF). METHODS: This was a cohort study involving two hospitals (A and B). We developed the AI in two steps. First, we developed an AI model (ECGT2T) to synthesize ten-lead ECG from the asynchronized 2-lead ECG (Lead I and II). ECGT2T is a deep learning model based on a generative adversarial network, which translates source ECGs to reference ECGs by learning styles of the reference ECGs. For this, we included adult patients aged ≥18 years from hospital A with at least one digitally stored 12-lead ECG. Second, we developed an AI model to detect HFrEF using a 10 s 12-lead ECG. The AI model was based on convolutional neural network. For this, we included adult patients who underwent ECG and echocardiography within 14 days. To validate the AI, we included adult patients from hospital B who underwent two-lead smartwatch ECG and echocardiography on the same day. The AI model generates a 10 s 12-lead ECG from a two-lead smartwatch ECG using ECGT2T and detects HFrEF using the generated 12-lead ECG. RESULTS: We included 137,673 patients with 458,745 ECGs and 38,643 patients with 88,900 ECGs from hospital A for developing the ECGT2T and HFrEF detection models, respectively. The area under the receiver operating characteristic curve of AI for detecting HFrEF using smartwatch ECG was 0.934 (95% confidence interval 0.913-0.955) with 755 patients from hospital B. The sensitivity, specificity, positive predictive value, and negative predictive value of AI were 0.897, 0.860, 0.258, and 0.994, respectively. CONCLUSIONS: An AI-enabled smartwatch 2-lead ECG could detect HFrEF with reasonable performance.

20.
PLoS One ; 17(8): e0272055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35944013

RESUMEN

To develop deep learning models for predicting Interoperative hypotension (IOH) using waveforms from arterial blood pressure (ABP), electrocardiogram (ECG), and electroencephalogram (EEG), and to determine whether combination ABP with EEG or CG improves model performance. Data were retrieved from VitalDB, a public data repository of vital signs taken during surgeries in 10 operating rooms at Seoul National University Hospital from January 6, 2005, to March 1, 2014. Retrospective data from 14,140 adult patients undergoing non-cardiac surgery with general anaesthesia were used. The predictive performances of models trained with different combinations of waveforms were evaluated and compared at time points at 3, 5, 10, 15 minutes before the event. The performance was calculated by area under the receiver operating characteristic (AUROC), area under the precision-recall curve (AUPRC), sensitivity and specificity. The model performance was better in the model using both ABP and EEG waveforms than in all other models at all time points (3, 5, 10, and 15 minutes before an event) Using high-fidelity ABP and EEG waveforms, the model predicted IOH with a AUROC and AUPRC of 0.935 [0.932 to 0.938] and 0.882 [0.876 to 0.887] at 5 minutes before an IOH event. The output of both ABP and EEG was more calibrated than that using other combinations or ABP alone. The results demonstrate that a predictive deep neural network can be trained using ABP, ECG, and EEG waveforms, and the combination of ABP and EEG improves model performance and calibration.


Asunto(s)
Aprendizaje Profundo , Hipotensión , Adulto , Presión Arterial/fisiología , Presión Sanguínea , Electrocardiografía/métodos , Electroencefalografía , Humanos , Hipotensión/diagnóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA