Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547066

RESUMEN

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Asunto(s)
Vejiga Urinaria , Infecciones Urinarias , Animales , Humanos , Vejiga Urinaria/cirugía , Urodinámica/fisiología , Prótesis e Implantes , Cistectomía
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33468630

RESUMEN

Precise, quantitative measurements of the hydration status of skin can yield important insights into dermatological health and skin structure and function, with additional relevance to essential processes of thermoregulation and other features of basic physiology. Existing tools for determining skin water content exploit surrogate electrical assessments performed with bulky, rigid, and expensive instruments that are difficult to use in a repeatable manner. Recent alternatives exploit thermal measurements using soft wireless devices that adhere gently and noninvasively to the surface of the skin, but with limited operating range (∼1 cm) and high sensitivity to subtle environmental fluctuations. This paper introduces a set of ideas and technologies that overcome these drawbacks to enable high-speed, robust, long-range automated measurements of thermal transport properties via a miniaturized, multisensor module controlled by a long-range (∼10 m) Bluetooth Low Energy system on a chip, with a graphical user interface to standard smartphones. Soft contact to the surface of the skin, with almost zero user burden, yields recordings that can be quantitatively connected to hydration levels of both the epidermis and dermis, using computational modeling techniques, with high levels of repeatability and insensitivity to ambient fluctuations in temperature. Systematic studies of polymers in layered configurations similar to those of human skin, of porcine skin with known levels of hydration, and of human subjects with benchmarks against clinical devices validate the measurement approach and associated sensor hardware. The results support capabilities in characterizing skin barrier function, assessing severity of skin diseases, and evaluating cosmetic and medication efficacy, for use in the clinic or in the home.


Asunto(s)
Electrónica , Piel/patología , Agua , Tecnología Inalámbrica , Adolescente , Adulto , Preescolar , Análisis de Elementos Finitos , Humanos , Temperatura
3.
Adv Healthc Mater ; 13(5): e2302797, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983897

RESUMEN

Chronic wounds represent a major health risk for diabetic patients. Regeneration of such wounds requires regular medical treatments over periods that can extend for several months or more. Schemes for monitoring the healing process can provide important feedback to the patient and caregiver. Although qualitative indicators such as malodor or fever can provide some indirect information, quantitative measurements of the wound bed have the potential to yield important insights. The work presented here introduces materials and engineering designs for a wireless system that captures spatio-temporal temperature and thermal transport information across the wound continuously throughout the healing process. Systematic experimental and computational studies establish the materials aspects and basic capabilities of this technology. In vivo studies reveal that both the temperature and the changes in this quantity offer information on wound status, with indications of initial exothermic reactions and mechanisms of scar tissue formation. Bioresorbable materials serve as the foundations for versions of this device that create possibilities for monitoring on and within the wound site, in a way that bypasses the risks of physical removal.


Asunto(s)
Cicatriz , Cicatrización de Heridas , Humanos , Temperatura , Diseño de Equipo
4.
ACS Sens ; 8(12): 4542-4553, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38052588

RESUMEN

Despite the increasing number of stents implanted each year worldwide, patients remain at high risk for developing in-stent restenosis. Various self-reporting stents have been developed to address this challenge, but their practical utility has been limited by low sensitivity and limited data collection. Herein, we propose a next-generation self-reporting stent that can monitor blood pressure and blood flow inside the blood arteries. This proposed self-reporting stent utilizes a larger inductor coil encapsulated on the entire surface of the stent strut, resulting in a 2-fold increase in the sensing resolution and coupling distance between the sensor and external antenna. The dual-pressure sensors enable the detection of blood flow in situ. The feasibility of the proposed self-reporting stent is successfully demonstrated through in vivo analysis in rats, verifying its biocompatibility and multifunctional utilities. This multifunctional self-reporting stent has the potential to greatly improve cardiovascular care by providing real-time monitoring and unprecedented insight into the functional dynamics of the heart.


Asunto(s)
Reestenosis Coronaria , Humanos , Animales , Ratas , Reestenosis Coronaria/diagnóstico , Reestenosis Coronaria/etiología , Stents/efectos adversos
5.
Adv Healthc Mater ; 12(4): e2202021, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36337006

RESUMEN

Accurate measurements of skin hydration are of great interest to dermatological science and clinical practice. This parameter serves as a relevant surrogate of skin barrier function, a key representative benchmark for overall skin health. The skin hydration sensor (SHS) is a soft, skin-interfaced wireless system that exploits a thermal measurement method, as an alternative to conventional impedance-based hand-held probes. This study presents multiple strategies for maximizing the sensitivity and reliability of this previously reported SHS platform. An in-depth analysis of the thermal physics of the measurement process serves as the basis for structural optimizations of the electronics and the interface to the skin. Additional engineering advances eliminate variabilities associated with manual use of the device and with protocols for the measurement. The cumulative effect is an improvement in sensitivity by 135% and in repeatability by 36% over previously reported results. Pilot trials on more than 200 patients in a dermatology clinic validate the practical utility of the sensor for fast, reliable measurements.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Reproducibilidad de los Resultados , Piel/química , Electrónica/métodos , Tecnología Inalámbrica
6.
Nat Biomed Eng ; 7(10): 1215-1228, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37037964

RESUMEN

Devices for monitoring blood haemodynamics can guide the perioperative management of patients with cardiovascular disease. Current technologies for this purpose are constrained by wired connections to external electronics, and wireless alternatives are restricted to monitoring of either blood pressure or blood flow. Here we report the design aspects and performance parameters of an integrated wireless sensor capable of implantation in the heart or in a blood vessel for simultaneous measurements of pressure, flow rate and temperature in real time. The sensor is controlled via long-range communication through a subcutaneously implanted and wirelessly powered Bluetooth Low Energy system-on-a-chip. The device can be delivered via a minimally invasive transcatheter procedure or it can be mounted on a passive medical device such as a stent, as we show for the case of the pulmonary artery in a pig model and the aorta and left ventricle in a sheep model, where the device performs comparably to clinical tools for monitoring of blood flow and pressure. Battery-less and wireless devices such as these that integrate capabilities for flow, pressure and temperature sensing offer the potential for continuous monitoring of blood haemodynamics in patients.

7.
Sci Adv ; 9(8): eade4687, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812305

RESUMEN

Chronic wounds, particularly those associated with diabetes mellitus, represent a growing threat to public health, with additional notable economic impacts. Inflammation associated with these wounds leads to abnormalities in endogenous electrical signals that impede the migration of keratinocytes needed to support the healing process. This observation motivates the treatment of chronic wounds with electrical stimulation therapy, but practical engineering challenges, difficulties in removing stimulation hardware from the wound site, and absence of means to monitor the healing process create barriers to widespread clinical use. Here, we demonstrate a miniaturized wireless, battery-free bioresorbable electrotherapy system that overcomes these challenges. Studies based on a splinted diabetic mouse wound model confirm the efficacy for accelerated wound closure by guiding epithelial migration, modulating inflammation, and promoting vasculogenesis. Changes in the impedance provide means for tracking the healing process. The results demonstrate a simple and effective platform for wound site electrotherapy.


Asunto(s)
Diabetes Mellitus , Terapia por Estimulación Eléctrica , Ratones , Animales , Implantes Absorbibles , Impedancia Eléctrica , Cicatrización de Heridas , Modelos Animales de Enfermedad , Inflamación
8.
Nat Biomed Eng ; 7(10): 1252-1269, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37106153

RESUMEN

Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology. The device incorporates a system-on-a-chip with Bluetooth Low Energy for data transmission and a compressed deep-learning module for autonomous operation, that offers neurorecording capabilities matching those of gold-standard wired systems. We also show the use of the implant in studies of sleep-wake regulation and for the programmable closed-loop pharmacological suppression of epileptic seizures via feedback from electroencephalography. The technology can support a broader range of applications in neuroscience and in biomedical research with small animals.

9.
NPJ Digit Med ; 5(1): 147, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36123384

RESUMEN

Swallowing is a complex neuromuscular activity regulated by the autonomic nervous system. Millions of adults suffer from dysphagia (impaired or difficulty swallowing), including patients with neurological disorders, head and neck cancer, gastrointestinal diseases, and respiratory disorders. Therapeutic treatments for dysphagia include interventions by speech-language pathologists designed to improve the physiology of the swallowing mechanism by training patients to initiate swallows with sufficient frequency and during the expiratory phase of the breathing cycle. These therapeutic treatments require bulky, expensive equipment to synchronously record swallows and respirations, confined to use in clinical settings. This paper introduces a wireless, wearable technology that enables continuous, mechanoacoustic tracking of respiratory activities and swallows through movements and vibratory processes monitored at the skin surface. Validation studies in healthy adults (n = 67) and patients with dysphagia (n = 4) establish measurement equivalency to existing clinical standard equipment. Additional studies using a differential mode of operation reveal similar performance even during routine daily activities and vigorous exercise. A graphical user interface with real-time data analytics and a separate, optional wireless module support both visual and haptic forms of feedback to facilitate the treatment of patients with dysphagia.

10.
JMIR Mhealth Uhealth ; 9(5): e25895, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33955844

RESUMEN

BACKGROUND: Melanoma is attributable to predisposing phenotypical factors, such as skin that easily sunburns and unprotected exposure to carcinogenic UV radiation. Reducing the proportion of young adults who get sunburned may reduce the incidence of melanoma, a deadly form of skin cancer. Advances in technology have enabled the delivery of real-time UV light exposure and content-relevant health interventions. OBJECTIVE: This study aims to examine the feasibility of young adults performing the following tasks daily: wearing a UV dosimeter, receiving text messages and real-time UV-B doses on their smartphone, and responding to daily web-based surveys about sunburn and sun protection. METHODS: Young adults aged 18-39 years (n=42) were recruited in the United States in June 2020 via social media. Participants received the UV Guard sun protection system, which consisted of a UV dosimeter and a smartphone app. During 3 consecutive periods, intervention intensity increased as follows: real-time UV-B dose; UV-B dose and daily behavioral facilitation text messages; and UV-B dose, goal setting, and daily text messages to support self-efficacy and self-regulation. Data were self-reported through daily web-based surveys for 28 days, and UV-B doses were transmitted to cloud-based storage. RESULTS: Patients' median age was 22 years (IQR 20, 29), and all patients had sun-sensitive skin. Sunburns were experienced during the study by fewer subjects (n=18) than those in the preceding 28 days (n=30). In July and August, the face was the most commonly sunburned area among 13 body locations; 52% (22/42) of sunburns occurred before the study and 45% (19/42) occurred during the study. The mean daily UV-B dose decreased during the 3 periods; however, this was not statistically significant. Young adults were most often exercising outdoors from 2 to 6 PM, walking from 10 AM to 6 PM, and relaxing from noon to 2 PM. Sunburn was most often experienced during exercise (odds ratio [OR] 5.65, 95% CI 1.60-6.10) and relaxation (OR 3.69, 95% CI 1.03-4.67) relative to those that did not exercise or relax in each category. The self-reported exit survey indicated that participants felt that they spent less time outdoors this summer compared to the last summer because of the COVID-19 pandemic and work. In addition, 38% (16/42) of the participants changed their use of sun protection based on their app-reported UV exposure, and 48% (20/42) shifted the time they went outside to periods with less-intense UV exposure. A total of 79% (33/42) of the participants were willing to continue using the UV Guard system outside of a research setting. CONCLUSIONS: In this proof-of-concept research, young adults demonstrated that they used the UV Guard system; however, optimization was needed. Although some sun protection behaviors changed, sunburn was not prevented in all participants, especially during outdoor exercise. TRIAL REGISTRATION: ClinicalTrials.gov NCT03344796; http://clinicaltrials.gov/ct2/show/NCT03344796.


Asunto(s)
COVID-19 , Quemadura Solar , Adolescente , Adulto , Conductas Relacionadas con la Salud , Humanos , Pandemias , Estudios Prospectivos , SARS-CoV-2 , Quemadura Solar/tratamiento farmacológico , Quemadura Solar/epidemiología , Quemadura Solar/prevención & control , Protectores Solares/uso terapéutico , Rayos Ultravioleta/efectos adversos , Estados Unidos , Adulto Joven
11.
Sci Adv ; 7(7)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568482

RESUMEN

Accurate, real-time monitoring of intravascular oxygen levels is important in tracking the cardiopulmonary health of patients after cardiothoracic surgery. Existing technologies use intravascular placement of glass fiber-optic catheters that pose risks of blood vessel damage, thrombosis, and infection. In addition, physical tethers to power supply systems and data acquisition hardware limit freedom of movement and add clutter to the intensive care unit. This report introduces a wireless, miniaturized, implantable optoelectronic catheter system incorporating optical components on the probe, encapsulated by soft biocompatible materials, as alternative technology that avoids these disadvantages. The absence of physical tethers and the flexible, biocompatible construction of the probe represent key defining features, resulting in a high-performance, patient-friendly implantable oximeter that can monitor localized tissue oxygenation, heart rate, and respiratory activity with wireless, real-time, continuous operation. In vitro and in vivo testing shows that this platform offers measurement accuracy and precision equivalent to those of existing clinical standards.

12.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33980495

RESUMEN

Soft, skin-integrated electronic sensors can provide continuous measurements of diverse physiological parameters, with broad relevance to the future of human health care. Motion artifacts can, however, corrupt the recorded signals, particularly those associated with mechanical signatures of cardiopulmonary processes. Design strategies introduced here address this limitation through differential operation of a matched, time-synchronized pair of high-bandwidth accelerometers located on parts of the anatomy that exhibit strong spatial gradients in motion characteristics. When mounted at a location that spans the suprasternal notch and the sternal manubrium, these dual-sensing devices allow measurements of heart rate and sounds, respiratory activities, body temperature, body orientation, and activity level, along with swallowing, coughing, talking, and related processes, without sensitivity to ambient conditions during routine daily activities, vigorous exercises, intense manual labor, and even swimming. Deployments on patients with COVID-19 allow clinical-grade ambulatory monitoring of the key symptoms of the disease even during rehabilitation protocols.


Asunto(s)
Acelerometría/instrumentación , Acelerometría/métodos , Electrocardiografía Ambulatoria/instrumentación , Electrocardiografía Ambulatoria/métodos , Dispositivos Electrónicos Vestibles , Temperatura Corporal , COVID-19 , Ejercicio Físico/fisiología , Frecuencia Cardíaca , Humanos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , SARS-CoV-2
13.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731359

RESUMEN

Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids. Electrical, optical, chemical, and thermal interfaces to cortical spheroids demonstrate some of the capabilities. Complex architectures and high-resolution features highlight the design versatility. Detailed studies of the spreading of coordinated bursting events across the surface of an isolated cortical spheroid and of the cascade of processes associated with formation and regrowth of bridging tissues across a pair of such spheroids represent two of the many opportunities in basic neuroscience research enabled by these platforms.


Asunto(s)
Sistema Nervioso , Neuronas
14.
Nat Commun ; 12(1): 5008, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429436

RESUMEN

Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.


Asunto(s)
Técnicas Biosensibles , Suministros de Energía Eléctrica , Úlcera por Presión , Presión , Temperatura , Tecnología Inalámbrica , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Diseño de Equipo , Monitoreo Fisiológico , Piel , Termografía/instrumentación , Termografía/métodos
15.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33277263

RESUMEN

Therapeutic compression garments (TCGs) are key tools for the management of a wide range of vascular lower extremity conditions. Proper use of TCGs involves application of a minimum and consistent pressure across the lower extremities for extended periods of time. Slight changes in the characteristics of the fabric and the mechanical properties of the tissues lead to requirements for frequent measurements and corresponding adjustments of the applied pressure. Existing sensors are not sufficiently small, thin, or flexible for practical use in this context, and they also demand cumbersome, hard-wired interfaces for data acquisition. Here, we introduce a flexible, wireless monitoring system for tracking both temperature and pressure at the interface between the skin and the TCGs. Detailed studies of the materials and engineering aspects of these devices, together with clinical pilot trials on a range of patients with different pathologies, establish the technical foundations and measurement capabilities.

16.
Sci Transl Med ; 12(574)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328330

RESUMEN

Precise form-fitting of prosthetic sockets is important for the comfort and well-being of persons with limb amputations. Capabilities for continuous monitoring of pressure and temperature at the skin-prosthesis interface can be valuable in the fitting process and in monitoring for the development of dangerous regions of increased pressure and temperature as limb volume changes during daily activities. Conventional pressure transducers and temperature sensors cannot provide comfortable, irritation-free measurements because of their relatively rigid construction and requirements for wired interfaces to external data acquisition hardware. Here, we introduce a millimeter-scale pressure sensor that adopts a soft, three-dimensional design that integrates into a thin, flexible battery-free, wireless platform with a built-in temperature sensor to allow operation in a noninvasive, imperceptible fashion directly at the skin-prosthesis interface. The sensor system mounts on the surface of the skin of the residual limb, in single or multiple locations of interest. A wireless reader module attached to the outside of the prosthetic socket wirelessly provides power to the sensor and wirelessly receives data from it, for continuous long-range transmission to a standard consumer electronic device such as a smartphone or tablet computer. Characterization of both the sensor and the system, together with theoretical analysis of the key responses, illustrates linear, accurate responses and the ability to address the entire range of relevant pressures and to capture skin temperature accurately, both in a continuous mode. Clinical application in two prosthesis users demonstrates the functionality and feasibility of this soft, wireless system.


Asunto(s)
Miembros Artificiales , Suministros de Energía Eléctrica , Diseño de Prótesis , Piel , Temperatura
17.
NPJ Digit Med ; 3: 29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195364

RESUMEN

Hydrocephalus is a common disorder caused by the buildup of cerebrospinal fluid (CSF) in the brain. Treatment typically involves the surgical implantation of a pressure-regulated silicone tube assembly, known as a shunt. Unfortunately, shunts have extremely high failure rates and diagnosing shunt malfunction is challenging due to a combination of vague symptoms and a lack of a convenient means to monitor flow. Here, we introduce a wireless, wearable device that enables precise measurements of CSF flow, continuously or intermittently, in hospitals, laboratories or even in home settings. The technology exploits measurements of thermal transport through near-surface layers of skin to assess flow, with a soft, flexible, and skin-conformal device that can be constructed using commercially available components. Systematic benchtop studies and numerical simulations highlight all of the key considerations. Measurements on 7 patients establish high levels of functionality, with data that reveal time dependent changes in flow associated with positional and inertial effects on the body. Taken together, the results suggest a significant advance in monitoring capabilities for patients with shunted hydrocephalus, with potential for practical use across a range of settings and circumstances, and additional utility for research purposes in studies of CSF hydrodynamics.

18.
Sci Adv ; 5(12): eaay2462, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853499

RESUMEN

Exposure to electromagnetic radiation (EMR) from the sun and from artificial lighting systems represents a modifiable risk factor for a broad range of health conditions including skin cancer, skin aging, sleep and mood disorders, and retinal damage. Technologies for personalized EMR dosimetry could guide lifestyles toward behaviors that ensure healthy levels of exposure. Here, we report a millimeter-scale, ultralow-power digital dosimeter platform that provides continuous EMR dosimetry in an autonomous mode at one or multiple wavelengths simultaneously, with time-managed wireless, long-range communication to standard consumer devices. A single, small button cell battery supports a multiyear life span, enabled by the combined use of a light-powered, accumulation mode of detection and a light-adaptive, ultralow-power circuit design. Field studies demonstrate single- and multimodal dosimetry platforms of this type, with a focus on monitoring short-wavelength blue light from indoor lighting and display systems and ultraviolet/visible/infrared radiation from the sun.


Asunto(s)
Radiación Electromagnética , Dosímetros de Radiación , Radiometría/instrumentación , Tecnología Inalámbrica/instrumentación , Suministros de Energía Eléctrica , Humanos , Luz , Iluminación
19.
ACS Nano ; 13(10): 10972-10979, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31124670

RESUMEN

Sensors that reproduce the complex characteristics of cutaneous receptors in the skin have important potential in the context of artificial systems for controlled interactions with the physical environment. Multimodal responses with high sensitivity and wide dynamic range are essential for many such applications. This report introduces a simple, three-dimensional type of microelectromechanical sensor that incorporates monocrystalline silicon nanomembranes as piezoresistive elements in a configuration that enables separate, simultaneous measurements of multiple mechanical stimuli, such as normal force, shear force, and bending, along with temperature. The technology provides high sensitivity measurements with millisecond response times, as supported by quantitative simulations. The fabrication and assembly processes allow scalable production of interconnected arrays of such devices with capabilities in spatiotemporal mapping. Integration with wireless data recording and transmission electronics allows operation with standard consumer devices.


Asunto(s)
Técnicas Biosensibles , Fenómenos Físicos , Piel/metabolismo , Tacto/fisiología , Electrónica , Fenómenos Mecánicos , Piel/química , Temperatura , Tacto/genética
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4154-4157, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441270

RESUMEN

This paper presents the first time-division-duplex transceiver IC for a 5-Fr 6-electrode renal denervation (RDN) catheter for treatment of resistant hypertension. Each IC encapsulated in a platinum electrode implements an RDN catheter with 37.5 % of diameter reduction, which enables minimally invasive surgery with reduced complications. The six electrodes sharing only four electrical wires perform packet communication with an external power control unit for independent operation and deliver the designated RF energy to the renal artery wall while measuring local temperature and impedance. Two 500- kHz 21-Vrms AC signals with ±35-V DC potentials are used as supplies to transfer up to 6-W RF ablation signal with 120-Vpp swing while maintaining the maximum DC supply voltages of the ICs less than the break-down voltage of 70 V. The proposed RDN IC fabricated in 0.18-µm HV BCDMOS occupies 2.1 mm2.


Asunto(s)
Electrodos , Ablación por Catéter , Humanos , Hipertensión , Riñón , Arteria Renal , Simpatectomía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA