Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Hyperthermia ; 30(1): 36-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24325307

RESUMEN

The development of phased array transducers and their integration with magnetic resonance (MR) guidance and thermal monitoring has established transcranial MR-guided focused ultrasound (tcMRgFUS) as an attractive non-invasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of transcranial FUS (tcFUS) therapy, as its heterogeneous nature and acoustic characteristics induce significant phase aberrations and energy attenuation, especially at the higher acoustic frequencies employed in tcFUS thermal therapy. These aberrations may distort and shift the acoustic focus as well as induce heating at the patient's scalp and skull bone. Phased array transducers feature hundreds of elements that can be driven individually, each with its own phase and amplitude. This feature allows for compensation of skull-induced aberrations by calculation and application of appropriate phase and amplitude corrections. In this paper, we illustrate the importance of precise refocusing and provide a comprehensive review of the wide variety of numerical and experimental techniques that have been used to estimate these corrections.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Cráneo , Animales , Artefactos , Diagnóstico por Imagen , Ultrasonido Enfocado de Alta Intensidad de Ablación/efectos adversos , Ultrasonido Enfocado de Alta Intensidad de Ablación/instrumentación , Humanos , Transductores
2.
Int J Hyperthermia ; 29(4): 346-57, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23672453

RESUMEN

Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.


Asunto(s)
Hipertermia Inducida , Modelos Biológicos , Simulación por Computador , Humanos , Neoplasias/terapia
3.
Bioelectromagnetics ; 33(5): 366-74, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22105520

RESUMEN

The objective of this study was to investigate if persons with implantable medical devices are intrinsically protected by the current electromagnetic safety guidelines. For inter-laboratory comparisons, the U.S. Food and Drug Administration has defined a generic implant as consisting of an insulated wire with noninsulated tips, simulating active implants composed of a metallic case, and insulated wires with electric contacts at the tip. In this study, we determined the amplitude of the uniform electric fields induced in body tissues that cause a local increase in the tissue temperature by 1 °C in the presence of this generic implant for a wide range of frequencies and wire lengths. The field amplitudes were compared to the basic restrictions of the current exposure guidelines for both occupational and uncontrolled exposure. Results showed that a 1 °C temperature increase in the tissues around the tips of the generic implant can be reached for field strengths much smaller than 1% of those in the basic restrictions. The simulated results were validated by experimental evaluations. The impact of perfusion was investigated and was found to lead to a reduction in the local temperature peak by only 1.6-3 times. Additional simulations inside an inhomogeneous anatomical model were performed to ascertain whether similar heating as in the generic model was observed. The significant temperature elevations due to the presence of a generic implant indicate that demonstrating compliance with the basic restrictions might not be sufficient for persons with implants. Special considerations may be required, especially in the case of novel, emerging technologies that feature strong near-fields at frequencies below 10 MHz (e.g., wireless power-transfer systems).


Asunto(s)
Equipos y Suministros/efectos adversos , Guías como Asunto , Prótesis e Implantes/efectos adversos , Temperatura , Absorción , Campos Electromagnéticos/efectos adversos , Seguridad de Equipos/normas , Equipos y Suministros/normas , Humanos , Fantasmas de Imagen
4.
J Ther Ultrasound ; 3: 11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236478

RESUMEN

BACKGROUND: Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections. METHODS: An integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targets. RESULTS: While (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of inhomogeneity is required to predict the pressure distribution for given steering parameters. CONCLUSIONS: Simulation-based approaches to calculate aberration corrections may aid in the extension of the tcFUS treatment envelope as well as predict and avoid secondary effects (standing waves, skull heating). Due to their superior performance, simulationbased techniques may prove invaluable in the amelioration of skull-induced aberration effects in tcFUS therapy. The next steps are to investigate shear-wave-induced effects in order to reliably exclude secondary hot-spots, and to develop comprehensive uncertainty assessment and validation procedures.

5.
Physiol Meas ; 33(2): 117-30, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22227810

RESUMEN

This paper investigates the main characteristics of the magneto-hemodynamic (MHD) response for application as a biomarker of vascular blood flow. The induced surface potential changes of a volunteer exposed to a 3 T static B0 field of a magnetic resonance imaging (MRI) magnet were measured over time at multiple locations by an electrocardiogram device and compared to simulation results. The flow simulations were based on boundary conditions derived from MRI flow measurements restricted to the aorta and vena cava. A dedicated and validated low-frequency electromagnetic solver was applied to determine the induced temporal surface potential change from the obtained 4D flow distribution using a detailed whole-body model of the volunteer. The simulated MHD signal agreed with major characteristics of the measured signal (temporal location of main peak, magnitude, variation across chest and along torso) except in the vicinity of the heart. The MHD signal is mostly influenced by the aorta; however, more vessels and better boundary conditions are needed to analyze the finer details of the response. The results show that the MHD signal is strongly position dependent with highly variable but reproducibly measurable distinguished characteristics. Additional investigations are necessary before determining whether the MHD effect is a reliable reference for location-specific information on blood flow.


Asunto(s)
Vasos Sanguíneos/fisiología , Simulación por Computador , Hemodinámica/fisiología , Imagen por Resonancia Magnética/métodos , Aorta/fisiología , Electrocardiografía , Electrodos , Campos Electromagnéticos , Humanos , Masculino , Modelos Cardiovasculares , Venas Cavas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA