Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Invertebr Pathol ; 165: 22-45, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30940472

RESUMEN

Since the 1980s, research into entomopathogenic nematodes (EPNs) in Latin America has produced many remarkable discoveries. In fact, 16 out of the 117 recognized species of EPNs have been recovered and described in the subcontinent, with many more endemic species and/or strains remaining to be discovered and identified. In addition, from an applied perspective, numerous technological innovations have been accomplished in relation to their implementation in biocontrol. EPNs have been evaluated against over 170 species of agricultural and urban insects, mites, and plant-parasitic nematodes under laboratory and field conditions. While much success has been recorded, many accomplishments remain obscure, due to their publication in non-English journals, thesis dissertations, conference proceedings, and other non-readily available sources. The present review provides a brief history of EPNs in Latin America, including current findings and future perspectives.


Asunto(s)
Agentes de Control Biológico , Control de Insectos , Control Biológico de Vectores , Rabdítidos , Agricultura/tendencias , Animales , Insectos/parasitología , Larva/parasitología , América Latina , Control Biológico de Vectores/métodos , Control Biológico de Vectores/tendencias , Rabdítidos/clasificación , Rabdítidos/crecimiento & desarrollo , Rabdítidos/aislamiento & purificación , Rabdítidos/patogenicidad
2.
World J Microbiol Biotechnol ; 33(4): 78, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28341907

RESUMEN

Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by ß-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.


Asunto(s)
Bacterias/enzimología , Biocombustibles/microbiología , Hongos/crecimiento & desarrollo , Glicósido Hidrolasas/metabolismo , Inulina/metabolismo , Plantas/metabolismo , Aspergillus/enzimología , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Fermentación , Proteínas Fúngicas/metabolismo , Hongos/enzimología , Residuos Industriales , Kluyveromyces/enzimología , Penicillium/enzimología , Pseudomonas/enzimología
3.
J Ind Microbiol Biotechnol ; 43(7): 927-39, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130462

RESUMEN

Economically important plants contain large amounts of inulin. Disposal of waste resulting from their processing presents environmental issues. Finding microorganisms capable of converting inulin waste to biofuel and valuable co-products at the processing site would have significant economic and environmental impact. We evaluated the ability of two mutant strains of Kluyveromyces marxianus (Km7 and Km8) to utilize inulin for ethanol production. In glucose medium, both strains consumed all glucose and produced 0.40 g ethanol/g glucose at 24 h. In inulin medium, Km7 exhibited maximum colony forming units (CFU)/mL and produced 0.35 g ethanol/g inulin at 24 h, while Km8 showed maximum CFU/mL and produced 0.02 g ethanol/g inulin at 96 h. At 24 h in inulin + glucose medium, Km7 produced 0.40 g ethanol/g (inulin + glucose) and Km8 produced 0.20 g ethanol/g (inulin + glucose) with maximum CFU/mL for Km8 at 72 h, 40 % of that for Km7 at 36 h. Extracellular inulinase activity at 6 h for both Km7 and Km8 was 3.7 International Units (IU)/mL.


Asunto(s)
Etanol/metabolismo , Glicósido Hidrolasas/metabolismo , Inulina/química , Kluyveromyces/crecimiento & desarrollo , Biocombustibles , Café/química , Medios de Cultivo/química , Glucosa/química , Kluyveromyces/enzimología , Kluyveromyces/genética , Mutación
4.
Appl Microbiol Biotechnol ; 99(22): 9723-43, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26272089

RESUMEN

Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.


Asunto(s)
Amoníaco/metabolismo , Metabolismo de los Hidratos de Carbono , Aceites/metabolismo , Proteínas/metabolismo , Rayos Ultravioleta , Yarrowia/metabolismo , Yarrowia/efectos de la radiación , Aerobiosis , Café/metabolismo , Medios de Cultivo/química , Tamizaje Masivo , Mutación , Yarrowia/crecimiento & desarrollo
5.
Appl Microbiol Biotechnol ; 98(20): 8413-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25204861

RESUMEN

The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.


Asunto(s)
Biocombustibles , Residuos Industriales , Biotecnología/métodos , Biotransformación , Café , Manipulación de Alimentos/métodos , Kluyveromyces/crecimiento & desarrollo , Kluyveromyces/metabolismo , Rhodotorula/crecimiento & desarrollo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharum , Yarrowia/crecimiento & desarrollo , Yarrowia/metabolismo , Zea mays
6.
J Lab Autom ; 20(6): 621-35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25720598

RESUMEN

A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains.


Asunto(s)
Cromosomas Artificiales de Levadura , Enzimas/genética , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/genética , Transformación Genética , Xilosa/metabolismo , Café , Medios de Cultivo/química , Etanol/metabolismo , Fermentación , Expresión Génica , Saccharomyces cerevisiae/crecimiento & desarrollo , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA