Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 71(1): 11-24.e7, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29937341

RESUMEN

ATRX is a chromatin remodeler that, together with its chaperone DAXX, deposits the histone variant H3.3 in pericentromeric and telomeric regions. Notably, ATRX is frequently mutated in tumors that maintain telomere length by a specific form of homologous recombination (HR). Surprisingly, in this context, we demonstrate that ATRX-deficient cells exhibit a defect in repairing exogenously induced DNA double-strand breaks (DSBs) by HR. ATRX operates downstream of the Rad51 removal step and interacts with PCNA and RFC-1, which are collectively required for DNA repair synthesis during HR. ATRX depletion abolishes DNA repair synthesis and prevents the formation of sister chromatid exchanges at exogenously induced DSBs. DAXX- and H3.3-depleted cells exhibit identical HR defects as ATRX-depleted cells, and both ATRX and DAXX function to deposit H3.3 during DNA repair synthesis. This suggests that ATRX facilitates the chromatin reconstitution required for extended DNA repair synthesis and sister chromatid exchange during HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Intercambio de Cromátides Hermanas , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Co-Represoras , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética
2.
Mol Cell ; 65(4): 671-684.e5, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28132842

RESUMEN

Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis.


Asunto(s)
Núcleo Celular/efectos de la radiación , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Fase G1/efectos de la radiación , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/patología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Endonucleasas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Fase G2 , Eliminación de Gen , Células HeLa , Humanos , Cinética , Proteína Homóloga de MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Transfección , Translocación Genética , Proteínas Supresoras de Tumor , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
3.
Mol Cell ; 62(6): 903-917, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264870

RESUMEN

Never-in-mitosis A-related kinase 1 (Nek1) has established roles in apoptosis and cell cycle regulation. We show that human Nek1 regulates homologous recombination (HR) by phosphorylating Rad54 at Ser572 in late G2 phase. Nek1 deficiency as well as expression of unphosphorylatable Rad54 (Rad54-S572A) cause unresolved Rad51 foci and confer a defect in HR. Phospho-mimic Rad54 (Rad54-S572E), in contrast, promotes HR and rescues the HR defect associated with Nek1 loss. Although expression of phospho-mimic Rad54 is beneficial for HR, it causes Rad51 removal from chromatin and degradation of stalled replication forks in S phase. Thus, G2-specific phosphorylation of Rad54 by Nek1 promotes Rad51 chromatin removal during HR in G2 phase, and its absence in S phase is required for replication fork stability. In summary, Nek1 regulates Rad51 removal to orchestrate HR and replication fork stability.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Recombinación Homóloga , Quinasa 1 Relacionada con NIMA/metabolismo , Proteínas Nucleares/metabolismo , Origen de Réplica , Puntos de Control de la Fase S del Ciclo Celular , ADN Helicasas/genética , Proteínas de Unión al ADN , Fibroblastos/enzimología , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mutación , Quinasa 1 Relacionada con NIMA/genética , Proteínas Nucleares/genética , Fosforilación , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Serina , Transducción de Señal , Factores de Tiempo , Transfección
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33431668

RESUMEN

Homologous recombination (HR) is an important DNA double-strand break (DSB) repair pathway that copies sequence information lost at the break site from an undamaged homologous template. This involves the formation of a recombination structure that is processed to restore the original sequence but also harbors the potential for crossover (CO) formation between the participating molecules. Synthesis-dependent strand annealing (SDSA) is an HR subpathway that prevents CO formation and is thought to predominate in mammalian cells. The chromatin remodeler ATRX promotes an alternative HR subpathway that has the potential to form COs. Here, we show that ATRX-dependent HR outcompetes RECQ5-dependent SDSA for the repair of most two-ended DSBs in human cells and leads to the frequent formation of COs, assessed by measuring sister chromatid exchanges (SCEs). We provide evidence that subpathway choice is dependent on interaction of both ATRX and RECQ5 with proliferating cell nuclear antigen. We also show that the subpathway usage varies among different cancer cell lines and compare it to untransformed cells. We further observe HR intermediates arising as ionizing radiation (IR)-induced ultra-fine bridges only in cells expressing ATRX and lacking MUS81 and GEN1. Consistently, damage-induced MUS81 recruitment is only observed in ATRX-expressing cells. Cells lacking BLM show similar MUS81 recruitment and IR-induced SCE formation as control cells. Collectively, these results suggest that the ATRX pathway involves the formation of HR intermediates whose processing is entirely dependent on MUS81 and GEN1 and independent of BLM. We propose that the predominant ATRX-dependent HR subpathway forms joint molecules distinct from classical Holliday junctions.


Asunto(s)
Proteínas de Unión al ADN/genética , Endonucleasas/genética , Recombinación Homóloga/genética , RecQ Helicasas/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proliferación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Cruciforme/genética , Resolvasas de Unión Holliday/genética , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Radiación Ionizante , Transducción de Señal/genética
5.
Mol Cell ; 55(5): 723-32, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25066234

RESUMEN

Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes repair of a subset of DNA DSBs at early time points, which can be rescued by inhibiting transcription globally. An ATM phosphorylation site on BAF180, a PBAF subunit, is required for both processes. Furthermore, we find that subunits of the PRC1 and PRC2 polycomb group complexes are similarly required for DSB-induced silencing and promoting repair. Cancer-associated BAF180 mutants are unable to restore these functions, suggesting PBAF's role in repressing transcription near DSBs may contribute to its tumor suppressor activity.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Roturas del ADN , Reparación del ADN , Regulación de la Expresión Génica , Factores de Transcripción/fisiología , Sitios de Unión , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Ubiquitinación
6.
Mol Cell ; 54(6): 1022-1033, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24837676

RESUMEN

The carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) is known to function in 5' strand resection during homologous recombination, similar to the budding yeast Sae2 protein, but its role in this process is unclear. Here, we characterize recombinant human CtIP and find that it exhibits 5' flap endonuclease activity on branched DNA structures, independent of the MRN complex. Phosphorylation of CtIP at known damage-dependent sites and other sites is essential for its catalytic activity, although the S327 and T847 phosphorylation sites are dispensable. A catalytic mutant of CtIP that is deficient in endonuclease activity exhibits wild-type levels of homologous recombination at restriction enzyme-generated breaks but is deficient in processing topoisomerase adducts and radiation-induced breaks in human cells, suggesting that the nuclease activity of CtIP is specifically required for the removal of DNA adducts at sites of DNA breaks.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Reparación del ADN por Recombinación/genética , Sitios de Unión/genética , Proteínas Portadoras/genética , Catálisis , Línea Celular , Supervivencia Celular/genética , ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas , Endonucleasas/genética , Humanos , Proteínas Nucleares/genética , Fosforilación/genética , Procesamiento Proteico-Postraduccional/genética , Radiación Ionizante , Recombinación Genética
7.
Genes Dev ; 28(24): 2693-8, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25512557

RESUMEN

PARP inhibitors (PARPis) are being used in patients with BRCA1/2 mutations. However, doubly deficient BRCA1(-/-)53BP1(-/-) cells or tumors become resistant to PARPis. Since 53BP1 or its known downstream effectors, PTIP and RIF1 (RAP1-interacting factor 1 homolog), lack enzymatic activities directly implicated in DNA repair, we decided to further explore the 53BP1-dependent pathway. In this study, we uncovered a nuclease, Artemis, as a PTIP-binding protein. Loss of Artemis restores PARPi resistance in BRCA1-deficient cells. Collectively, our data demonstrate that Artemis is the major downstream effector of the 53BP1 pathway, which prevents end resection and promotes nonhomologous end-joining and therefore directly competes with the homologous recombination repair pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Reparación del ADN/fisiología , Proteínas Nucleares/metabolismo , Proteínas Portadoras/genética , Reparación del ADN/genética , Proteínas de Unión al ADN , Endonucleasas , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteína 1 de Unión al Supresor Tumoral P53
8.
Trends Biochem Sci ; 42(9): 690-701, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28739276

RESUMEN

DNA double-strand breaks (DSBs) are a hazardous form of damage that can potentially cause cell death or genomic rearrangements. In mammalian G1- and G2-phase cells, DSBs are repaired with two-component kinetics. In both phases, a fast process uses canonical nonhomologous end joining (c-NHEJ) to repair the majority of DSBs. In G2, slow repair occurs by homologous recombination. The slow repair process in G1 also involves c-NHEJ proteins but additionally requires the nuclease Artemis and DNA end resection. Here, we consider the nature of slow DSB repair in G1 and evaluate factors determining whether DSBs are repaired with fast or slow kinetics. We consider limitations in our current knowledge and present a speculative model for Artemis-dependent c-NHEJ and the environment underlying its usage.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Endonucleasas/metabolismo , Proteínas de Unión al ADN , Humanos , Cinética
9.
Proc Natl Acad Sci U S A ; 112(40): 12396-401, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392532

RESUMEN

Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles.


Asunto(s)
Partículas alfa , Daño del ADN , ADN/metabolismo , Retina/efectos de la radiación , Animales , ADN/química , ADN/genética , Relación Dosis-Respuesta en la Radiación , Histonas/metabolismo , Ratones Endogámicos C57BL , Retina/citología , Retina/metabolismo , Técnicas de Cultivo de Tejidos , Rayos X
10.
Mol Cell ; 31(2): 167-77, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657500

RESUMEN

Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Desoxirribonucleasas/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/enzimología , Fibroblastos/efectos de la radiación , Heterocromatina/efectos de la radiación , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Radiación Ionizante , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de la radiación , Proteína 28 que Contiene Motivos Tripartito
11.
Biochem J ; 471(1): 1-11, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26392571

RESUMEN

DNA DSBs (double-strand breaks) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that, in normal cells, DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilization of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. In the present review, we evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilization of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We consider the ways by which cancers modify and hijack these processes to gain genomic instability.


Asunto(s)
Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Inestabilidad Genómica , Neoplasias/metabolismo , Transducción de Señal , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
12.
PLoS Genet ; 9(8): e1003667, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935532

RESUMEN

Non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the two main pathways for repairing DNA double-strand breaks (DSBs). During the G2 phase of the mammalian cell cycle, both processes can operate and chromatin structure is one important factor which determines DSB repair pathway choice. ATM facilitates the repair of heterochromatic DSBs by phosphorylating and inactivating the heterochromatin building factor KAP-1, leading to local chromatin relaxation. Here, we show that ATM accumulation and activity is strongly diminished at DSBs undergoing end-resection during HR. Such DSBs remain unrepaired in cells devoid of the HR factors BRCA2, XRCC3 or RAD51. Strikingly, depletion of KAP-1 or expression of phospho-mimic KAP-1 allows repair of resected DSBs in the absence of BRCA2, XRCC3 or RAD51 by an erroneous PARP-dependent alt-NHEJ process. We suggest that DSBs in heterochromatin elicit initial local heterochromatin relaxation which is reversed during HR due to the release of ATM from resection break ends. The restored heterochromatic structure facilitates HR and prevents usage of error-prone alternative processes.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN/genética , Heterocromatina/genética , Recombinación Homóloga/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA2/genética , Células CHO , Cricetulus , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito
13.
EMBO J ; 30(6): 1079-92, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21317870

RESUMEN

DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice. Loss of NHEJ proteins also slows DSB repair allowing increased resection. However, expression of an autophosphorylation-defective DNA-PKcs mutant, which binds DSBs but precludes the completion of NHEJ, dramatically reduces DSB end resection at all DSBs. In contrast, loss of HR does not impair repair by NHEJ although CtIP-dependent end resection precludes NHEJ usage. We propose that NHEJ initially attempts to repair DSBs and, if rapid rejoining does not ensue, then resection occurs promoting repair by HR. Finally, we identify novel roles for ATM in regulating DSB end resection; an indirect role in promoting KAP-1-dependent chromatin relaxation and a direct role in phosphorylating and activating CtIP.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Fase G2 , Línea Celular , Heterocromatina/metabolismo , Humanos , Cinética , Redes y Vías Metabólicas , Recombinación Genética
14.
Nucleic Acids Res ; 41(21): 9719-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23969417

RESUMEN

Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR. In contrast to this role for 53BP1 in HR in G2 phase, we show that it is dispensable for HR in S phase, where HC regions are likely relaxed during replication.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Reparación del ADN por Recombinación , Animales , Proteína BRCA1/antagonistas & inhibidores , Línea Celular Tumoral , Células Cultivadas , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Fase G2/genética , Heterocromatina/metabolismo , Humanos , Ratones , Proteínas Represoras/antagonistas & inhibidores , Proteína 28 que Contiene Motivos Tripartito , Proteína 1 de Unión al Supresor Tumoral P53
15.
Crit Rev Biochem Mol Biol ; 46(4): 271-83, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21524151

RESUMEN

The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4-6 h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10-20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency.


Asunto(s)
Ciclo Celular/efectos de la radiación , Reparación del ADN , Genes cdc , Cromatina/genética , Cromatina/metabolismo , Inestabilidad Cromosómica , Rotura Cromosómica , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Activación Enzimática , Regulación de la Expresión Génica , Mitógenos/metabolismo , Fosforilación , Fase S
16.
EMBO J ; 28(21): 3413-27, 2009 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-19779458

RESUMEN

Homologous recombination (HR) and non-homologous end joining (NHEJ) represent distinct pathways for repairing DNA double-strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ-dependent process, which repairs a defined subset of radiation-induced DSBs in G1-phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB-repair pathway whereas HR is only essential for repair of approximately 15% of X- or gamma-ray-induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation-induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP-1, providing evidence that HR in G2 repairs heterochromatin-associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single-stranded DNA and Rad51 foci at radiation-induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Fase G2/efectos de la radiación , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , ADN Helicasas , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas , Fibroblastos/efectos de la radiación , Fase G1/efectos de la radiación , Eliminación de Gen , Células HeLa , Heterocromatina/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Proteínas Supresoras de Tumor/genética
17.
Nucleic Acids Res ; 39(6): 2144-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21087997

RESUMEN

Topoisomerases class II (topoII) cleave and re-ligate the DNA double helix to allow the passage of an intact DNA strand through it. Chemotherapeutic drugs such as etoposide target topoII, interfere with the normal enzymatic cleavage/re-ligation reaction and create a DNA double-strand break (DSB) with the enzyme covalently bound to the 5'-end of the DNA. Such DSBs are repaired by one of the two major DSB repair pathways, non-homologous end-joining (NHEJ) or homologous recombination. However, prior to repair, the covalently bound topoII needs to be removed from the DNA end, a process requiring the MRX complex and ctp1 in fission yeast. CtIP, the mammalian ortholog of ctp1, is known to promote homologous recombination by resecting DSB ends. Here, we show that human cells arrested in G0/G1 repair etoposide-induced DSBs by NHEJ and, surprisingly, require the MRN complex (the ortholog of MRX) and CtIP. CtIP's function for repairing etoposide-induced DSBs by NHEJ in G0/G1 requires the Thr-847 but not the Ser-327 phosphorylation site, both of which are needed for resection during HR. This finding establishes that CtIP promotes NHEJ of etoposide-induced DSBs during G0/G1 phase with an end-processing function that is distinct to its resection function.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Proteínas Portadoras/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Etopósido/toxicidad , Proteínas Nucleares/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/fisiología , Células Cultivadas , Endodesoxirribonucleasas , Fase G1/efectos de los fármacos , Fase G1/genética , Humanos , Proteína Homóloga de MRE11 , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Treonina/metabolismo
18.
Nucleic Acids Res ; 39(15): 6489-99, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21511815

RESUMEN

DNA double-strand breaks (DSBs) can induce chromosomal aberrations and carcinogenesis and their correct repair is crucial for genetic stability. The cellular response to DSBs depends on damage signaling including the phosphorylation of the histone H2AX (γH2AX). However, a lack of γH2AX formation in heterochromatin (HC) is generally observed after DNA damage induction. Here, we examine γH2AX and repair protein foci along linear ion tracks traversing heterochromatic regions in human or murine cells and find the DSBs and damage signal streaks bending around highly compacted DNA. Given the linear particle path, such bending indicates a relocation of damage from the initial induction site to the periphery of HC. Real-time imaging of the repair protein GFP-XRCC1 confirms fast recruitment to heterochromatic lesions inside murine chromocenters. Using single-ion microirradiation to induce localized DSBs directly within chromocenters, we demonstrate that H2AX is early phosphorylated within HC, but the damage site is subsequently expelled from the center to the periphery of chromocenters within ∼ 20 min. While this process can occur in the absence of ATM kinase, the repair of DSBs bordering HC requires the protein. Finally, we describe a local decondensation of HC at the sites of ion hits, potentially allowing for DSB movement via physical forces.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Eucromatina/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Cinética , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
19.
Proc Natl Acad Sci U S A ; 107(32): 14205-10, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660770

RESUMEN

Ionizing radiation (IR) induces a variety of DNA lesions among which DNA double-strand breaks (DSBs) are the biologically most significant. It is currently unclear if DSB repair is equally efficient after low and high doses. Here, we use gamma-H2AX, phospho-ATM (pATM), and 53BP1 foci analysis to monitor DSB repair. We show, consistent with a previous study, that the kinetics of gamma-H2AX and pATM foci loss in confluent primary human fibroblasts are substantially compromised after doses of 10 mGy and lower. Following 2.5 mGy, cells fail to show any foci loss. Strikingly, cells pretreated with 10 microM H(2)O(2) efficiently remove all gamma-H2AX foci induced by 10 mGy. At the concentration used, H(2)O(2) produces single-strand breaks and base damages via the generation of oxygen radicals but no DSBs. Moreover, 10 microM H(2)O(2) up-regulates a set of genes that is also up-regulated after high (200 mGy) but not after low (10 mGy) radiation doses. This suggests that low radical levels induce a response that is required for the repair of radiation-induced DSBs when the radiation damage is too low to cause the induction itself. To address the in vivo significance of this finding, we established gamma-H2AX and 53BP1 foci analysis in various mouse tissues. Although mice irradiated with 100 mGy or 1 Gy show efficient gamma-H2AX and 53BP1 foci removal during 24 h post-IR, barely any foci loss was observed after 10 mGy. Our data suggest that the cellular response to DSBs is substantially different for low vs. high radiation doses.


Asunto(s)
Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Fibroblastos/efectos de la radiación , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/efectos de la radiación , Células Cultivadas , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/efectos de la radiación , Fibroblastos/citología , Histonas/efectos de la radiación , Humanos , Cinética , Ratones , Proteínas Serina-Treonina Quinasas/efectos de la radiación , Proteínas Supresoras de Tumor/efectos de la radiación
20.
J Cell Biol ; 176(6): 749-55, 2007 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-17353355

RESUMEN

DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and approximately 20 gammaH2AX foci remain.


Asunto(s)
Rotura Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN , Fase G2/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Endonucleasas , Humanos , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA