Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(14): 3716-3721, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29463731

RESUMEN

The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Vacuolas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/farmacología , Microtúbulos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Transporte de Proteínas , Transducción de Señal , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(2): 452-7, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715743

RESUMEN

The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.


Asunto(s)
Actinas/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Vacuolas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efectos de los fármacos , Imagenología Tridimensional , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Meristema/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Mutación/genética , Miosinas/metabolismo , Fosfatidilinositoles/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/ultraestructura
3.
Plant Physiol ; 169(4): 2789-804, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26511912

RESUMEN

The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth.


Asunto(s)
Arabidopsis/genética , Proteínas Fúngicas/genética , Inflorescencia/genética , Ustilaginales/genética , Zea mays/genética , Secuencia de Aminoácidos , Arabidopsis/microbiología , Arabidopsis/fisiología , Secuencia de Bases , Transporte Biológico/genética , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Hifa/genética , Hifa/metabolismo , Ácidos Indolacéticos/metabolismo , Inflorescencia/metabolismo , Inflorescencia/fisiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Meristema/genética , Meristema/metabolismo , Meristema/fisiología , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Plantas Modificadas Genéticamente , Unión Proteica , Homología de Secuencia de Ácido Nucleico , Técnicas del Sistema de Dos Híbridos , Ustilaginales/metabolismo , Ustilaginales/fisiología , Zea mays/microbiología , Zea mays/fisiología
4.
Plant Cell ; 25(12): 4894-911, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24326589

RESUMEN

The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)-green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A-induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Transporte Biológico , Vesículas Cubiertas por Clatrina/fisiología , Fosfatidilinositol 4,5-Difosfato/fisiología , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/metabolismo , Polaridad Celular , Endocitosis , Proteínas Fluorescentes Verdes/análisis , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
5.
Proc Natl Acad Sci U S A ; 110(9): 3627-32, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23391733

RESUMEN

Gravitropic bending of plant organs is mediated by an asymmetric signaling of the plant hormone auxin between the upper and lower side of the respective organ. Here, we show that also another plant hormone, gibberellic acid (GA), shows asymmetric action during gravitropic responses. Immunodetection using an antibody against GA and monitoring GA signaling output by downstream degradation of DELLA proteins revealed an asymmetric GA distribution and response with the maximum at the lower side of gravistimulated roots. Genetic or pharmacological manipulation of GA levels or response affects gravity-mediated auxin redistribution and root bending response. The higher GA levels at the lower side of the root correlate with increased amounts of PIN-FORMED2 (PIN2) auxin transporter at the plasma membrane. The observed increase in PIN2 stability is caused by a specific GA effect on trafficking of PIN proteins to lytic vacuoles that presumably occurs downstream of brefeldin A-sensitive endosomes. Our results suggest that asymmetric auxin distribution instructive for gravity-induced differential growth is consolidated by the asymmetric action of GA that stabilizes the PIN-dependent auxin stream along the lower side of gravistimulated roots.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Giberelinas/metabolismo , Gravitropismo/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Vacuolas/metabolismo , Arabidopsis/efectos de los fármacos , Brefeldino A/farmacología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Giberelinas/farmacología , Gravitación , Raíces de Plantas/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vacuolas/efectos de los fármacos
6.
J Exp Bot ; 66(16): 5103-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041320

RESUMEN

The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Epidermis de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas
7.
Proc Natl Acad Sci U S A ; 109(5): 1554-9, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307611

RESUMEN

Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the Auxin Response Factor 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Flavonoles/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo
8.
Plant Cell ; 23(5): 1920-31, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21551390

RESUMEN

Endocytosis is a crucial mechanism by which eukaryotic cells internalize extracellular and plasma membrane material, and it is required for a multitude of cellular and developmental processes in unicellular and multicellular organisms. In animals and yeast, the best characterized pathway for endocytosis depends on the function of the vesicle coat protein clathrin. Clathrin-mediated endocytosis has recently been demonstrated also in plant cells, but its physiological and developmental roles remain unclear. Here, we assessed the roles of the clathrin-mediated mechanism of endocytosis in plants by genetic means. We interfered with clathrin heavy chain (CHC) function through mutants and dominant-negative approaches in Arabidopsis thaliana and established tools to manipulate clathrin function in a cell type-specific manner. The chc2 single mutants and dominant-negative CHC1 (HUB) transgenic lines were defective in bulk endocytosis as well as in internalization of prominent plasma membrane proteins. Interference with clathrin-mediated endocytosis led to defects in constitutive endocytic recycling of PIN auxin transporters and their polar distribution in embryos and roots. Consistent with this, these lines had altered auxin distribution patterns and associated auxin transport-related phenotypes, such as aberrant embryo patterning, imperfect cotyledon specification, agravitropic growth, and impaired lateral root organogenesis. Together, these data demonstrate a fundamental role for clathrin function in cell polarity, growth, patterning, and organogenesis in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Ácidos Indolacéticos/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Polaridad Celular , Genes Reporteros , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes de Fusión , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
9.
J Integr Plant Biol ; 55(9): 864-75, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23945284

RESUMEN

The regulation of cellular growth is of vital importance for embryonic and postembryonic patterning. Growth regulation in the epidermis has importance for organ growth rates in roots and shoots, proposing epidermal cells as an interesting model for cellular growth regulation. Here we assessed whether the root epidermis is a suitable model system to address cell size determination. In Arabidopsis thaliana L., root epidermal cells are regularly spaced in neighbouring tricho- (root hair) and atrichoblast (non-hair) cells, showing already distinct cell size regulation in the root meristem. We determined cell sizes in the root meristem and at the onset of cellular elongation, revealing that not only division rates but also cellular shape is distinct in tricho- and atrichoblasts. Intriguingly, epidermal-patterning mutants, failing to define differential vacuolization in neighbouring epidermal cell files, also display non-differential growth. Using these epidermal-patterning mutants, we show that polarized growth behaviour of epidermal tricho- and atrichoblast is interdependent, suggesting non-cell autonomous signals to integrate tissue expansion. Besides the interweaved cell-type-dependent growth mechanism, we reveal an additional role for epidermal patterning genes in root meristem size and organ growth regulation. We conclude that epidermal cells represent a suitable model system to study cell size determination and interdependent tissue growth.


Asunto(s)
Arabidopsis/genética , Tipificación del Cuerpo/genética , Tamaño de la Célula , Genes de Plantas/genética , Meristema/anatomía & histología , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Forma de la Célula/genética , Meristema/genética , Mutación/genética , Transducción de Señal/genética
10.
Ecol Lett ; 15(12): 1397-405, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22943183

RESUMEN

Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity-ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.


Asunto(s)
Biodiversidad , Ambiente , Microalgas/fisiología , Chlorophyta/crecimiento & desarrollo , Chlorophyta/fisiología , Ecosistema , Calor , Microalgas/crecimiento & desarrollo , Modelos Biológicos , Salinidad , Estrés Fisiológico
11.
Elife ; 112022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35686734

RESUMEN

The vacuole has a space-filling function, allowing a particularly rapid plant cell expansion with very little increase in cytosolic content (Löfke et al., 2015; Scheuring et al., 2016; Dünser et al., 2019). Despite its importance for cell size determination in plants, very little is known about the mechanisms that define vacuolar size. Here, we show that the cellular and vacuolar size expansions are coordinated. By developing a pharmacological tool, we enabled the investigation of membrane delivery to the vacuole during cellular expansion. Our data reveal that endocytic membrane sorting from the plasma membrane to the vacuole is enhanced in the course of rapid root cell expansion. While this 'compromise' mechanism may theoretically at first decelerate cell surface enlargements, it fuels vacuolar expansion and, thereby, ensures the coordinated augmentation of vacuolar occupancy in dynamically expanding plant cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
12.
Biochem J ; 413(1): 115-24, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18402553

RESUMEN

PtdIns is an important precursor for inositol-containing lipids, including polyphosphoinositides, which have multiple essential functions in eukaryotic cells. It was previously proposed that different regulatory functions of inositol-containing lipids may be performed by independent lipid pools; however, it remains unclear how such subcellular pools are established and maintained. In the present paper, a previously uncharacterized Arabidopsis gene product with similarity to the known Arabidopsis PIS (PtdIns synthase), PIS1, is shown to be an active enzyme, PIS2, capable of producing PtdIns in vitro. PIS1 and PIS2 diverged slightly in substrate preferences for CDP-DAG [cytidinediphospho-DAG (diacylglycerol)] species differing in fatty acid composition, PIS2 preferring unsaturated substrates in vitro. Transient expression of fluorescently tagged PIS1 or PIS2 in onion epidermal cells indicates localization of both enzymes in the ER (endoplasmic reticulum) and, possibly, Golgi, as was reported previously for fungal and mammalian homologues. Constitutive ectopic overexpression of PIS1 or PIS2 in Arabidopsis plants resulted in elevated levels of PtdIns in leaves. PIS2-overexpressors additionally exhibited significantly elevated levels of PtdIns(4)P and PtdIns(4,5)P(2), whereas polyphosphoinositides were not elevated in plants overexpressing PIS1. In contrast, PIS1-overexpressors contained significantly elevated levels of DAG and PtdEtn (phosphatidylethanolamine), an effect not observed in plants overexpressing PIS2. Biochemical analysis of transgenic plants with regards to fatty acids associated with relevant lipids indicates that lipids increasing with PIS1 overexpression were enriched in saturated or monounsaturated fatty acids, whereas lipids increasing with PIS2 overexpression, including polyphosphoinositides, contained more unsaturated fatty acids. The results indicate that PtdIns populations originating from different PIS isoforms may enter alternative routes of metabolic conversion, possibly based on specificity and immediate metabolic context of the biosynthetic enzymes.


Asunto(s)
Arabidopsis/enzimología , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Fosfatidilinositoles/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Isoenzimas , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente
13.
PLoS One ; 13(5): e0197185, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847550

RESUMEN

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a "peripheral infrastructure" around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.


Asunto(s)
Clonación Molecular/métodos , Ingeniería Genética/métodos , Vectores Genéticos/química , Nicotiana/genética , Proteínas de Plantas/genética , Plásmidos/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Calmodulina/genética , Calmodulina/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Vectores Genéticos/metabolismo , Sistemas de Lectura Abierta , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
14.
Methods Mol Biol ; 1242: 83-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25408446

RESUMEN

Commercially available fluorescent dyes enable the fast and specific visualization of plant vacuoles, allowing for investigation of membrane dynamics and vacuolar biogenesis in living cells. Here, we describe different approaches tinting the tonoplast or the vacuolar lumen with a range of dyes, and illustrate its utilization with established fluorescent-tagged marker lines.


Asunto(s)
Arabidopsis/citología , Colorantes Fluorescentes/química , Células Vegetales/química , Coloración y Etiquetado/métodos , Vacuolas/química , Arabidopsis/química , Rastreo Celular/métodos , Fluoresceínas/química , Compuestos de Piridinio/química , Compuestos de Amonio Cuaternario/química
15.
Elife ; 42015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25742605

RESUMEN

The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas SNARE/metabolismo , Vacuolas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Tamaño de la Célula/efectos de los fármacos , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Immunoblotting , Ácidos Indolacéticos/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas SNARE/genética , Vacuolas/efectos de los fármacos
16.
Mech Dev ; 130(1): 82-94, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22425600

RESUMEN

Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.


Asunto(s)
Comunicación Celular , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta/genética , Procesamiento Proteico-Postraduccional , Comunicación Celular/genética , Comunicación Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Fosforilación , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteolisis , Ubiquitinación/genética , Red trans-Golgi/genética , Red trans-Golgi/fisiología
17.
Curr Biol ; 22(14): 1326-32, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22683261

RESUMEN

The dynamic spatial and temporal distribution of the crucial plant signaling molecule auxin is achieved by feedback coordination of auxin signaling and intercellular auxin transport pathways. Developmental roles of auxin have been attributed predominantly to its effect on transcription; however, an alternative pathway involving AUXIN BINDING PROTEIN1 (ABP1) has been proposed to regulate clathrin-mediated endocytosis in roots and Rho-like GTPase (ROP)-dependent pavement cell interdigitation in leaves. In this study, we show that ROP6 and its downstream effector RIC1 regulate clathrin association with the plasma membrane for clathrin-mediated endocytosis, as well as for its feedback regulation by auxin. Genetic analysis revealed that ROP6/RIC1 acts downstream of ABP1 to regulate endocytosis. This signaling circuit is also involved in the feedback regulation of PIN-FORMED 1 (PIN1) and PIN2 auxin transporters activity (via its constitutive endocytosis) and corresponding auxin transport-mediated processes, including root gravitropism and leave vascular tissue patterning. Our findings suggest that the signaling module auxin-ABP1-ROP6/RIC1-clathrin-PIN1/PIN2 is a shared component of the feedback regulation of auxin transport during both root and aerial development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Clatrina/metabolismo , Proteínas de Unión al GTP/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/crecimiento & desarrollo , Brefeldino A/metabolismo , Membrana Celular/metabolismo , Endocitosis , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal
18.
Dev Cell ; 20(6): 855-66, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21664582

RESUMEN

The phytohormone auxin is an important determinant of plant development. Directional auxin flow within tissues depends on polar localization of PIN auxin transporters. To explore regulation of PIN-mediated auxin transport, we screened for suppressors of PIN1 overexpression (supo) and identified an inositol polyphosphate 1-phosphatase mutant (supo1), with elevated inositol trisphosphate (InsP(3)) and cytosolic Ca(2+) levels. Pharmacological and genetic increases in InsP(3) or Ca(2+) levels also suppressed the PIN1 gain-of-function phenotypes and caused defects in basal PIN localization, auxin transport and auxin-mediated development. In contrast, the reductions in InsP(3) levels and Ca(2+) signaling antagonized the effects of the supo1 mutation and disrupted preferentially apical PIN localization. InsP(3) and Ca(2+) are evolutionarily conserved second messengers involved in various cellular functions, particularly stress responses. Our findings implicate them as modifiers of cell polarity and polar auxin transport, and highlight a potential integration point through which Ca(2+) signaling-related stimuli could influence auxin-mediated development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Polaridad Celular , Ácidos Indolacéticos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Western Blotting , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Monoéster Fosfórico Hidrolasas , Transducción de Señal
19.
Mol Plant ; 3(5): 870-81, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20603382

RESUMEN

The Arabidopsis phosphoinositide kinases PI4Kß1 and PIP5K5 have been implicated in the control of directional vesicle trafficking underlying polar tip growth in pollen tubes. PI4Kß1 and PIP5K5 catalyze key consecutive steps of phosphoinositide conversion, and it appears obvious that phosphatidylinositol-4-phosphate formed by PI4Kß1 might act as a substrate for phosphatidylinositol-4,5-bisphosphate formation by PIP5K5. However, this hypothesis has not been experimentally addressed and distinct localization patterns of PI4Kß1, PIP5K5, and also PI-synthases (PIS) generating phosphatidylinositol suggest additional complexity. Here, the synergistic functionality of enzymes of phosphoinositide conversion was assessed. In tobacco and Arabidopsis pollen tubes, phosphoinositides influence the apical secretion of pectin, and increased pectin deposition results in characteristic morphological alterations. Catalytically active and dominant negative variants of PI4Kß1 and PIP5K5 were systematically co-expressed in tobacco pollen tubes and the incidence of morphologies related to enhanced pectin secretion was evaluated. The data support a proposed functional interplay of PI4Kß1 and PIP5K5 at the trans-Golgi network, mediating directional vesicle trafficking. Co-expression experiments additionally including PIS isoforms, PIS1 or PIS2, indicate that pectin secretion is synergistically mediated by PI4Kß1 and PIP5K5 acting on PtdIns formed by PIS2 rather than PIS1. Possible ramifications for the preferential channeling of phosphoinositide intermediates between particular isoforms of PI pathway enzymes are discussed.


Asunto(s)
Nicotiana/enzimología , Nicotiana/metabolismo , Pectinas/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/enzimología , Tubo Polínico/metabolismo , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tubo Polínico/genética , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA