Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 31(6): 10150-10158, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157569

RESUMEN

The ability to store large amounts of photonic quantum states is regarded as substantial for future optical quantum computation and communication technologies. However, research for multiplexed quantum memories has been focused on systems that show good performance only after an elaborate preparation of the storage media. This makes it generally more difficult to apply outside a laboratory environment. In this work, we demonstrate a multiplexed random-access memory to store up to four optical pulses using electromagnetically induced transparency in warm cesium vapor. Using a Λ-System on the hyperfine transitions of the Cs D1 line, we achieve a mean internal storage efficiency of 36% and a 1/e lifetime of 3.2 µs. In combination with future improvements, this work facilitates the implementation of multiplexed memories in future quantum communication and computation infrastructures.

2.
Chaos ; 33(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37408150

RESUMEN

We propose a new approach to dynamical system forecasting called data-informed-reservoir computing (DI-RC) that, while solely being based on data, yields increased accuracy, reduced computational cost, and mitigates tedious hyper-parameter optimization of the reservoir computer (RC). Our DI-RC approach is based on the recently proposed hybrid setup where a knowledge-based model is combined with a machine learning prediction system, but it replaces the knowledge-based component by a data-driven model discovery technique. As a result, our approach can be chosen when a suitable knowledge-based model is not available. We demonstrate our approach using a delay-based RC as the machine learning component in conjunction with sparse identification of nonlinear dynamical systems for the data-driven model component. We test the performance on two example systems: the Lorenz system and the Kuramoto-Sivashinsky system. Our results indicate that our proposed technique can yield an improvement in the time-series forecasting capabilities compared with both approaches applied individually, while remaining computationally cheap. The benefit of our proposed approach, compared with pure RC, is most pronounced when the reservoir parameters are not optimized, thereby reducing the need for hyperparameter optimization.

3.
Chaos ; 31(9): 093129, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34598439

RESUMEN

Bovine viral diarrhea (BVD) is a disease in cattle with complex transmission dynamics that causes substantial economic losses and affects animal welfare. The infection can be transient or persistent. The mostly asymptomatic persistently infected hosts are the main source for transmission of the virus. This characteristic makes it difficult to control the spreading of BVD. We develop a deterministic compartmental model for the spreading dynamics of BVD within a herd and derive the basic reproduction number. This epidemiological quantity indicates that identification and removal of persistently infected animals is a successful control strategy if the transmission rate of transiently infected animals is small. Removing persistently infected animals from the herd at birth results in recurrent outbreaks with decreasing peak prevalence. We propose a stochastic version of the compartmental model that includes stochasticity in the transmission parameters. This stochasticity leads to sustained oscillations in cases where the deterministic model predicts oscillations with decreasing amplitude. The results provide useful information for the design of control strategies.


Asunto(s)
Diarrea , Brotes de Enfermedades , Animales , Número Básico de Reproducción , Bovinos , Diarrea/epidemiología
4.
Entropy (Basel) ; 23(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34945866

RESUMEN

Reservoir computing is a machine learning method that solves tasks using the response of a dynamical system to a certain input. As the training scheme only involves optimising the weights of the responses of the dynamical system, this method is particularly suited for hardware implementation. Furthermore, the inherent memory of dynamical systems which are suitable for use as reservoirs mean that this method has the potential to perform well on time series prediction tasks, as well as other tasks with time dependence. However, reservoir computing still requires extensive task-dependent parameter optimisation in order to achieve good performance. We demonstrate that by including a time-delayed version of the input for various time series prediction tasks, good performance can be achieved with an unoptimised reservoir. Furthermore, we show that by including the appropriate time-delayed input, one unaltered reservoir can perform well on six different time series prediction tasks at a very low computational expense. Our approach is of particular relevance to hardware implemented reservoirs, as one does not necessarily have access to pertinent optimisation parameters in physical systems but the inclusion of an additional input is generally possible.

5.
Opt Express ; 28(3): 3361-3377, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122006

RESUMEN

We investigate the impact of short optical feedback on a two-state quantum dot laser. A region in the feedback parameter space is identified, where the laser emission periodically alternates between oscillation bursts from the quantum dot ground and excited state, i.e. two-color anti-phase oscillation bursts. We compare these results to the low-frequency fluctuations and regular pulse packages of single-color semiconductor lasers and show via an in-depth bifurcation analysis, that the two-color oscillation bursts originate from a torus-bifurcation of a two-state periodic orbit. A cascade of further period-doubling bifurcations produces chaotic dynamics of the burst envelope. Our findings showcase the rich dynamics and complexity, which can be generated via the interaction of electronic and photonic time scales in quantum dot lasers with optical feedback.

6.
Opt Lett ; 45(22): 6210-6213, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33186952

RESUMEN

We present a generalization of the Haus master equation in which a dynamical boundary condition allows to describe complex pulse trains, such as the Q-switched and harmonic transitions of passive mode-locking, as well as the weak interactions between localized states. As an example, we investigate the role of group velocity dispersion on the stability boundaries of the Q-switched regime and compare our results with that of a time-delayed system.

7.
Chaos ; 30(9): 093124, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33003948

RESUMEN

The deep time-delay reservoir computing concept utilizes unidirectionally connected systems with time-delays for supervised learning. We present how the dynamical properties of a deep Ikeda-based reservoir are related to its memory capacity (MC) and how that can be used for optimization. In particular, we analyze bifurcations of the corresponding autonomous system and compute conditional Lyapunov exponents, which measure generalized synchronization between the input and the layer dynamics. We show how the MC is related to the systems' distance to bifurcations or magnitude of the conditional Lyapunov exponent. The interplay of different dynamical regimes leads to an adjustable distribution between the linear and nonlinear MC. Furthermore, numerical simulations show resonances between the clock cycle and delays of the layers in all degrees of MC. Contrary to MC losses in single-layer reservoirs, these resonances can boost separate degrees of MC and can be used, e.g., to design a system with maximum linear MC. Accordingly, we present two configurations that empower either high nonlinear MC or long time linear MC.

8.
Opt Express ; 27(20): 28816-28831, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684627

RESUMEN

Mutual coupling and injection locking of semiconductor lasers is of great interest in non-linear dynamics and its applications for instance in secure data communication and photonic reservoir computing. Despite its importance, it has hardly been studied in microlasers operating at µW light levels. In this context, vertically emitting quantum dot micropillar lasers are of high interest. Usually, their light emission is bimodal, and the gain competition of the associated linearly polarized fundamental emission modes results in complex switching dynamics. We report on selective optical injection into either one of the two fundamental mode components of a bimodal micropillar laser. Both modes can lock to the master laser and influence the non-injected mode by reducing the available gain. We demonstrate that the switching dynamics can be tailored externally via optical injection in very good agreement with our theory based on semi-classical rate equations.

9.
Philos Trans A Math Phys Eng Sci ; 377(2153): 20180124, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31329060

RESUMEN

We perform a linear stability analysis and numerical bifurcation diagrams of a class-C laser with time-delayed optical feedback. We employ a rate equation system based on the Maxwell-Bloch equations, and study the influence of the dephasing time on the laser dynamics. We find a stabilizing effect of an intermediate dephasing time, i.e. when moving from a class-B to a class-C laser. At long dephasing times, a destabilization of the laser solution occurs by a feedback-induced unlocking of Rabi oscillations at the second laser threshold. We predict an optimum resistance to time-delayed optical feedback for dephasing times close to the photon cavity lifetime. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.

10.
Opt Express ; 26(17): 21872-21886, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130890

RESUMEN

Optically pumped passively modelocked vertical external-cavity surface-emitting lasers (VECSELs) can generate pulses as short as 100 fs with an intracavity semiconductor saturable absorber mirror (SESAM). Very stable soliton modelocking can be obtained, however, the high-Q-cavity, the short gain lifetime, and the kinetic-hole burning can also support rather complex multipulse instabilities which we analyze in more details here. This onset of multipulse operation limits the maximum average output power with fundamental modelocking and occurs at the roll-over of the cavity round trip reflectivity. Unfortunately, such multipulse operation sometimes can mimic stable modelocking when only limited diagnostics are available.

11.
Opt Express ; 26(17): 22457-22470, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130939

RESUMEN

Microlasers are ideal candidates to bring the fascinating variety of nonlinear complex dynamics found in delay-coupled systems to the realm of quantum optics. Particularly attractive is the possibility of tailoring the devices' emission properties via non-invasive delayed optical coupling. However, until now scarce research has been done in this direction. Here, we experimentally and theoretically investigate the effects of delayed optical feedback on the mode-switching dynamics of an electrically driven bimodal quantum-dot micropillar laser, characterizing its impact on the micropillar's output power, optical spectrum and photon statistics. Feedback is found to influence the switching dynamics and its characteristics time scales. In addition, stochastic switching is reduced with the subsequent impact on the microlaser photon statistics. Our results contribute to the comprehension of feedback-induced phenomena in micropillar lasers and pave the way towards the external control and tailoring of the properties of these key systems for the nanophotonics community.

12.
Chaos ; 28(6): 063114, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960415

RESUMEN

In the model system of two instantaneously and symmetrically coupled identical Stuart-Landau oscillators, we demonstrate that there exist stable solutions with symmetry-broken amplitude- and phase-locking. These states are characterized by a non-trivial fixed phase or amplitude relationship between both oscillators, while simultaneously maintaining perfectly harmonic oscillations of the same frequency. While some of the surrounding bifurcations have been previously described, we present the first detailed analytical and numerical description of these states and present analytically and numerically how they are embedded in the bifurcation structure of the system, arising both from the in-phase and the anti-phase solutions, as well as through a saddle-node bifurcation. The dependence of both the amplitude and the phase on parameters can be expressed explicitly with analytic formulas. As opposed to the previous reports, we find that these symmetry-broken states are stable, which can even be shown analytically. As an example of symmetry-breaking solutions in a simple and symmetric system, these states have potential applications as bistable states for switches in a wide array of coupled oscillatory systems.

13.
Chaos ; 27(11): 114301, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195326

RESUMEN

Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

14.
Phys Rev Lett ; 117(15): 154101, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768335

RESUMEN

Many physical systems involve time-delayed feedback or coupling. In such delay systems, noise can give rise to undesirable oscillations at frequencies resonant to the delay times. We investigate how an additional feedback term can suppress noise-induced modulations in delay systems with self-feedback that exhibit deterministic oscillatory dynamics. A simple characteristic equation is derived to predict optimal delay times for the prototypical example of a Stuart-Landau oscillator subject to two feedback terms. We then show that a characteristic equation of the same form accurately describes the dominant Floquet modes of more complex oscillatory systems and hence can be used to optimize the suppression of noise-induced modulations. This is shown for mode-locked lasers and FitzHugh-Nagumo oscillators subject to self-feedback.

15.
Opt Express ; 22(5): 4867-79, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663826

RESUMEN

We investigate the dependence of the amplitude-phase coupling in quantum-dot (QD) lasers on the charge-carrier scattering timescales. The carrier scattering processes influence the relaxation oscillation parameters, as well as the frequency chirp, which are both important parameters when determining the modulation performance of the laser device and its reaction to optical perturbations. We find that the FM/AM response exhibits a strong dependence on the modulation frequency, which leads to a modified optical response of QD lasers when compared to conventional laser devices. Furthermore, the frequency response curve changes with the scattering time scales, which can allow for an optimization of the laser stability towards optical perturbations.

16.
Opt Express ; 22(11): 13288-307, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24921523

RESUMEN

Excitability and coherence resonance are studied in a semiconductor quantum dot laser under short optical self-feedback. For low pump levels, these are observed close to a homoclinic bifurcation, which is in correspondence with earlier observations in quantum well lasers. However, for high pump levels, we find excitability close to a boundary crisis of a chaotic attractor. We demonstrate that in contrast to the homoclinic bifurcation the crisis and thus the excitable regime is highly sensitive to the pump current. The excitability threshold increases with the pump current, which permits to adjust the sensitivity of the excitable unit to noise as well as to shift the optimal noise strength, at which maximum coherence is observed. The shift adds up to more than one order of magnitude, which strongly facilitates experimental realizations.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36399593

RESUMEN

We show that many delay-based reservoir computers considered in the literature can be characterized by a universal master memory function (MMF). Once computed for two independent parameters, this function provides linear memory capacity for any delay-based single-variable reservoir with small inputs. Moreover, we propose an analytical description of the MMF that enables its efficient and fast computation. Our approach can be applied not only to single-variable delay-based reservoirs governed by known dynamical rules, such as the Mackey-Glass or Stuart-Landau-like systems, but also to reservoirs whose dynamical model is not available.

18.
Sci Rep ; 11(1): 18558, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535698

RESUMEN

We investigate the emission dynamics of mutually coupled nanolasers and predict ways to optimize their stability, i.e., maximize their locking range. We find that tuning the cavity lifetime to the same order of magnitude as the dephasing time of the microscopic polarization yields optimal operation conditions, which allow for wider tuning ranges than usually observed in conventional semiconductor lasers. The lasers are modeled by Maxwell-Bloch type class-C equations. For our analysis, we analytically determine the steady state solutions, analyze the symmetries of the system and numerically characterize the emission dynamics via the underlying bifurcation structure. The polarization lifetime is found to be a crucial parameter, which impacts the observed dynamics in the parameter space spanned by frequency detuning, coupling strength and coupling phase.

19.
Neural Netw ; 124: 158-169, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32006747

RESUMEN

The time-delay-based reservoir computing setup has seen tremendous success in both experiment and simulation. It allows for the construction of large neuromorphic computing systems with only few components. However, until now the interplay of the different timescales has not been investigated thoroughly. In this manuscript, we investigate the effects of a mismatch between the time-delay and the clock cycle for a general model. Typically, these two time scales are considered to be equal. Here we show that the case of equal or resonant time-delay and clock cycle could be actively detrimental and leads to an increase of the approximation error of the reservoir. In particular, we can show that non-resonant ratios of these time scales have maximal memory capacities. We achieve this by translating the periodically driven delay-dynamical system into an equivalent network. Networks that originate from a system with resonant delay-times and clock cycles fail to utilize all of their degrees of freedom, which causes the degradation of their performance.


Asunto(s)
Redes Neurales de la Computación , Periodicidad
20.
Sci Rep ; 9(1): 1783, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741953

RESUMEN

We experimentally and theoretically investigate the pulsed emission dynamics of a three section tapered semiconductor quantum dot laser. The laser output is characterized in terms of peak power, pulse width, timing jitter and amplitude stability and a range of outstanding pulse performance is found. A cascade of dynamic operating regimes is identified and comprehensively investigated. We propose a microscopically motivated traveling-wave model, which optimizes the computation time and naturally allows insights into the internal carrier dynamics. The model excellently reproduces the measured results and is further used to study the pulse-generation mechanism as well as the influence of the geometric design on the pulsed emission. We identify a pulse shortening mechanism responsible for the device performance, that is unique to the device geometry and configuration. The results may serve as future guidelines for the design of monolithic high-power passively mode-locked quantum dot semiconductor lasers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA