Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928438

RESUMEN

Anaplastic thyroid cancer (ATC) is one of the deadliest human cancers and represents <2% of thyroid carcinomas. A therapeutic target for ATC is represented by anaplastic lymphoma kinase (ALK) rearrangements, involved in tumor growth. Crizotinib is an oral small-molecule tyrosine kinase inhibitor of the ALK, MET, and ROS1 kinases, approved in ALK-positive non-small cell lung cancer. Until now, the effect of crizotinib in "primary human ATC cells" (pATCs) with transforming striatin (STRN)-ALK fusion has not been reported in the literature. In this study, we aimed to obtain pATCs with STRN-ALK in vitro and evaluate the in vitro antineoplastic action of crizotinib. Thyroid surgical samples were obtained from 12 ATC patients and 6 controls (who had undergone parathyroidectomy). A total of 10/12 pATC cultures were obtained, 2 of which with transforming STRN-ALK fusion (17%). Crizotinib inhibited proliferation, migration, and invasion and increased apoptosis in 3/10 pATC cultures (2 of which with/1 without STRN-ALK), particularly in those with STRN-ALK. Moreover, crizotinib significantly inhibited the proliferation of AF cells (a continuous cell line obtained from primary ATC cells). In conclusion, the antineoplastic activity of crizotinib has been shown in human pATCs (with STRN-ALK) in preclinical studies in vitro, opening the way to future clinical evaluation in these patients.


Asunto(s)
Quinasa de Linfoma Anaplásico , Apoptosis , Proliferación Celular , Crizotinib , Inhibidores de Proteínas Quinasas , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Crizotinib/farmacología , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/patología , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Masculino , Femenino , Antineoplásicos/farmacología , Persona de Mediana Edad , Movimiento Celular/efectos de los fármacos , Anciano , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Células Tumorales Cultivadas , Línea Celular Tumoral , Proteínas de Unión a Calmodulina , Proteínas de la Membrana , Proteínas del Tejido Nervioso
2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047661

RESUMEN

Aldehyde dehydrogenase 1A3 (ALDH1A3), one of the three members of the aldehyde dehydrogenase 1A subfamily, has been associated with increased progression and drug resistance in various types of solid tumours. Recently, it has been reported that high ALDH1A3 expression is prognostic of poor survival in patients with malignant pleural mesothelioma (MPM), an asbestos-associated chemoresistant cancer. We treated MPM cells, cultured as multicellular spheroids, with NR6, a potent and highly selective ALDH1A3 inhibitor. Here we report that NR6 treatment caused the accumulation of toxic aldehydes, induced DNA damage, CDKN2A expression and cell growth arrest. We observed that, in CDKN2A proficient cells, NR6 treatment induced IL6 expression, but abolished CXCL8 expression and IL-8 release, preventing both neutrophil recruitment and generation of neutrophil extracellular traps (NETs). Furthermore, we demonstrate that in response to ALDH1A3 inhibition, CDKN2A loss skewed cell fate from senescence to apoptosis. Dissecting the role of ALDH1A3 isoform in MPM cells and tumour microenvironment can open new fronts in the treatment of this cancer.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Aldehído Deshidrogenasa , Línea Celular Tumoral , Inhibidores Enzimáticos/uso terapéutico , Neoplasias Pulmonares/genética , Mesotelioma/tratamiento farmacológico , Mesotelioma/genética , Mesotelioma/metabolismo , Infiltración Neutrófila , Neoplasias Pleurales/patología , Esferoides Celulares/metabolismo , Microambiente Tumoral , Retinal-Deshidrogenasa/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768721

RESUMEN

Anaplastic thyroid cancer (ATC) is a rare and rapidly fatal human cancer. Its usual treatment includes the combination of surgery, external hyperfractionated radiation therapy, and chemotherapy. These treatments permit achieving about 6-10 months of median survival. For this reason, it is challenging to predict the ATC patient clinical therapy responsiveness. Pazopanib is a multitarget tyrosine kinase inhibitor of VEGF receptors, PDGF, and c-Kit. Until now, the effect of pazopanib in primary human ATC cells (pATC) has not been reported in the literature. The aim of our study was to evaluate in vitro the antineoplastic effect of pazopanib in pATC. Surgical thyroidal tissues were collected from five patients with ATC, from thyroid biopsy at the moment of first surgical operation. An inhibition of proliferation, migration, and invasion, and an increase in apoptosis were demonstrated upon treating pATC cells with pazopanib (p < 0.05). Moreover, pazopanib was able to significantly decrease the VEGF expression in pATC cells (p < 0.05). To conclude, in this study, we demonstrate the antineoplastic activity of the antiangiogenic inhibitor, pazopanib, in human pATC in vitro.


Asunto(s)
Antineoplásicos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/patología , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
4.
Mar Drugs ; 20(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36355005

RESUMEN

Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized ß-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of ß-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound.


Asunto(s)
Ciclodextrinas , Sesquiterpenos , beta-Ciclodextrinas , Ciclodextrinas/farmacología , Ciclodextrinas/química , beta-Ciclodextrinas/química , Sesquiterpenos/farmacología , Solubilidad
5.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199160

RESUMEN

Acadesine (ACA), a pharmacological activator of AMP-activated protein kinase (AMPK), showed a promising beneficial effect in a mouse model of colitis, indicating this drug as an alternative tool to manage IBDs. However, ACA displays some pharmacodynamic limitations precluding its therapeutical applications. Our study was aimed at evaluating the in vitro and in vivo effects of FA-5 (a novel direct AMPK activator synthesized in our laboratories) in an experimental model of colitis in rats. A set of experiments evaluated the ability of FA5 to activate AMPK and to compare the efficacy of FA5 with ACA in an experimental model of colitis. The effects of FA-5, ACA, or dexamethasone were tested in rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis to assess systemic and tissue inflammatory parameters. In in vitro experiments, FA5 induced phosphorylation, and thus the activation, of AMPK, contextually to the activation of SIRT-1. In vivo, FA5 counteracted the increase in spleen weight, improved the colon length, ameliorated macroscopic damage score, and reduced TNF and MDA tissue levels in DNBS-treated rats. Of note, FA-5 displayed an increased anti-inflammatory efficacy as compared with ACA. The novel AMPK activator FA-5 displays an improved anti-inflammatory efficacy representing a promising pharmacological tool against bowel inflammation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Benzofuranos/uso terapéutico , Desarrollo de Medicamentos , Activadores de Enzimas/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Animales , Benzofuranos/farmacología , Peso Corporal/efectos de los fármacos , Línea Celular , Colon/efectos de los fármacos , Colon/patología , Dinitrofluorobenceno/análogos & derivados , Electroforesis en Gel Bidimensional , Ontología de Genes , Enfermedades Inflamatorias del Intestino/patología , Interleucina-10/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Tamaño de los Órganos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Bazo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
6.
Molecules ; 27(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35011233

RESUMEN

Deemed as poorly represented in nature, aurones have been often overlooked by researchers compared to other members of the flavonoid superfamily. However, over the past two decades, they have been reassessed by the scientific community, who are increasingly appreciating their ability to modulate several biological pathways. This review summarizes the recent literature on this class of compounds, which has been analyzed from both a chemical and a functional point of view. Original articles, reviews and editorials featured in Pubmed and Scifinder over the last twenty years have been taken into account to provide the readers with a view of the chemical strategies to obtain them, their functional properties, and their potential of technological use. The resulting comprehensive picture aims at raising the awareness of these natural derivatives as effective drug candidates, fostering the development of novel synthetic analogues.


Asunto(s)
Benzofuranos/síntesis química , Extractos Vegetales/química , Animales , Antiinflamatorios/farmacología , Antifúngicos/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Benzofuranos/química , Benzofuranos/farmacología , Catálisis , Chalconas/química , Ciclización , Flavonoides/farmacología , Flavonoides/normas , Humanos , Estructura Molecular , Extractos Vegetales/farmacología , Polifenoles/farmacología , Relación Estructura-Actividad
7.
J Enzyme Inhib Med Chem ; 35(1): 1194-1205, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32396745

RESUMEN

Aldose reductase is a key enzyme in the development of long term diabetic complications and its inhibition represents a viable therapeutic solution for people affected by these pathologies. Therefore, the search for effective aldose reductase inhibitors is a timely and pressing challenge. Herein we describe the access to a novel class of oxyimino derivatives, obtained by reaction of a 1,5-dicarbonyl substrate with O-(arylmethyl)hydroxylamines. The synthesised compounds proved to be active against the target enzyme. The best performing inhibitor, compound (Z)-8, proved also to reduce both cell death and the apoptotic process when tested in an in vitro model of diabetic retinopathy made of photoreceptor-like 661w cell line exposed to high-glucose medium, counteracting oxidative stress triggered by hyperglycaemic conditions.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Iminas/química , Azúcares/química , Inhibidores Enzimáticos/química , Estructura Molecular
8.
Bioorg Med Chem ; 27(19): 115045, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31427145

RESUMEN

A novel series of 1,5-diarylpyrrol-3-sulfur derivatives (10-12) was synthesized and characterized by NMR and mass spectroscopy and x-ray diffraction. The biological activity of these compounds was evaluated in in vitro and in vivo tests to assess their COX-2 inhibitory activity along with anti-inflammatory and antinociceptive effect. Results showed that the bioisosteric transformation of previously reported alkoxyethyl ethers (9a-c) into the corresponding alkyl thioethers (10a-c) still leads to selective and active compounds being the COX-2 inhibitory activity for most of them in the low nanomolar range. The oxidation products of 10a,b were also investigated and both couple of sulfoxides (11a,b) and sulfones (12a,b) showed an appreciable COX-2 inhibitory activity. Molecular modeling studies were performed to investigate the binding mode of the representative compounds 10b, 11b, and 12b into COX-2 enzyme and to explore the potential site of metabolism of 10a and 10b due to the different in vivo efficacy. Among the developed compounds, compound 10b showed a significant in vivo anti-inflammatory and antinociceptive activity paving the way to develop novel anti-inflammatory drugs.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Pirroles/uso terapéutico , Sulfuros/uso terapéutico , Sulfonas/uso terapéutico , Sulfóxidos/uso terapéutico , Analgésicos/síntesis química , Analgésicos/metabolismo , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/uso terapéutico , Carragenina , Línea Celular , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/metabolismo , Diseño de Fármacos , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Pirroles/síntesis química , Pirroles/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Relación Estructura-Actividad , Sulfuros/síntesis química , Sulfuros/metabolismo , Sulfonas/síntesis química , Sulfonas/metabolismo , Sulfóxidos/síntesis química , Sulfóxidos/metabolismo
9.
Bioorg Chem ; 92: 103298, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31557624

RESUMEN

Diabetes is a multi-factorial disorder that should be treated with multi-effective compounds. Here we describe the access to polyhydroxylated pyrrolidines, belonging to the d-gluco and d-galacto series, through aminocyclization reactions of two differentially protected d-xylo-hexos-4-ulose derivatives. The prepared compounds proved to inhibit both alpha-glucosidase, responsible for the emergence of hyperglycemic spikes, and aldose reductase, accountable for the development of abnormalities in diabetic tissues. Accordingly, they show the dual inhibitory profile deemed as ideal for diabetes treatment. Significantly, compound 17b reduced the process of cell death and restored the physiological levels of oxidative stress when tested in the photoreceptor-like 661w cell line, thus proving to be effective in an in vitro model of diabetic retinopathy.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Pirrolidinas/farmacología , alfa-Glucosidasas/metabolismo , Aldehído Reductasa/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
10.
J Enzyme Inhib Med Chem ; 34(1): 350-360, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30734590

RESUMEN

Seven triterpenoid saponins were identified in methanolic extracts of seeds of the Zolfino bean landrace (Phaseolus vulgaris L.) by HPLC fractionation, revealing their ability to inhibit highly purified human recombinant aldose reductase (hAKR1B1). Six of these compounds were associated by MS analysis with the following saponins already reported in different Phaseolus vulgaris varieties: soyasaponin Ba (V), soyasaponin Bb, soyasaponin Bd (sandosaponin A), soyasaponin αg, 3-O-[R-l-rhamnopyranosyl(1 → 2)-α-d-glucopyranosyl(1 → 2)-α-d-glucuronopyranosyl]olean-12-en-22-oxo-3α,-24-diol, and soyasaponin ßg. The inhibitory activity of the collected fractions containing the above compounds was tested for hAKR1B1-dependent reduction of both l-idose and 4-hydroxynonenal, revealing that some are able to differentially inhibit the enzyme. The present work also highlights the difficulties in the search for aldose reductase differential inhibitors (ARDIs) in mixtures due to the masking effect on ARDIs exerted by the presence of conventional aldose reductase inhibitors. The possibility of differential inhibition generated by a different inhibitory model of action of molecules on different substrates undergoing transformation is also discussed.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Phaseolus/química , Saponinas/farmacología , Semillas/química , Triterpenos/farmacología , Aldehído Reductasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Conformación Molecular , Saponinas/química , Saponinas/aislamiento & purificación , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/aislamiento & purificación
11.
Saudi Pharm J ; 27(8): 1174-1181, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31885477

RESUMEN

Low-grade chronic inflammation is a key process of angiogenesis in tumour progression. We investigated whether a synthetic analogue of apigenin, the 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a] pyrimidin-4-one (called DB103), interfered with the mechanisms involved in the angiogenic process induced by the inflammatory cytokine tumour necrosis factor (TNFα). In endothelial cells, DB103 but not apigenin reduced the TNFα-induced oxidative stress. DB103 inhibited the activation of ERK1/2 but not JNK, p38 and Akt kinases, while apigenin was not so selective because it inhibited essentially all examined kinases. Similarly, apigenin inhibited the TNFα-induced transcription factors CREB, STAT3, STAT5 and NF-κB, while DB103 acted only on NF-κB. DB103 inhibited the induced-release of angiogenic factors such as monocyte chemotactic protein-1, interleukin-6 (IL-6) and angiopoietin-2 but not IL-8, while apigenin reduced the IL-6 and IL-8 release. DB103 revealed a better ability than apigenin to modulate proangiogenic responses induced by an inflammatory microenvironment.

12.
Med Res Rev ; 37(6): 1299-1317, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28586525

RESUMEN

Thyroid carcinomas (TCs), the most common endocrine tumors, represent the eighth most common cancer diagnosed worldwide in both women and men. To treat these malignancies, several drugs are now available and a number of novel ones have been enrolling in clinical trials, addressing both oncogenic pathways in cancer cells and angiogenic pathways in tumor endothelial cells. However, their use is not devoid of serious toxicities and their efficacy is limited, being dependent on carcinoma typology and the occurrence of acquired resistance. Accordingly, it is time to recast therapeutic strategies against these types of tumors to get to newer and fully effective drugs. In this perspective, latest findings demonstrate that cancer stem cells (CSCs) represent a challenging target to strike. They possess core traits of self-renewal and differentiation, being resistant to the effects of chemotherapy and radiation and playing a key role in mediating metastasis. Therefore, basic molecular elements sustaining both development of thyroid cancer stem cells and their residence in the stemness condition represent a set of innovative and still unexplored targets to address. In this review, a thorough literature survey has been accomplished, to take stock of mechanisms governing thyroid carcinomas and to point out both their currently available treatments and the novel forthcoming ones. Pubmed, Scifinder and ClinicalTrials.gov were exploited as research applications and registry database, respectively. Original articles, reviews, and editorials published within the last ten years, as well as open clinical investigations in the field, were analyzed to suggest new exciting therapeutic opportunities for people affected by TCs.


Asunto(s)
Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos
13.
Bioorg Med Chem Lett ; 27(20): 4760-4764, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28935265

RESUMEN

A series of quinazolinone-based rhodanine-3-acetic acids was synthesized and tested for in vitro aldose reductase inhibitory activity. All the target compounds displayed nanomolar activity against the target enzyme. Compounds 3a, 3b, and 3e exhibited almost 3-fold higher activity as compared to the only marketed reference drug epalrestat. Structure-activity relationship studies indicated that bulky substituents at the 3-phenyl ring of the quinazolinone moiety are generally not tolerated in the active site of the enzyme. Insertion of a methoxy group on the central benzylidene ring was found to have a variable effect on ALR-2 activity depending on the nature of peripheral quinazolinone ring substituents. Removal of the acetic acid moiety led to inactive or weakly active target compounds. Docking and molecular dynamic simulations of the most active rhodanine-3-acetic acid derivatives were also carried out, to provide the basis for further structure-guided design of novel inhibitors.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Quinazolinonas/química , Rodanina/química , Ácido Acético/química , Aldehído Reductasa/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/metabolismo , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Rodanina/análogos & derivados , Rodanina/síntesis química , Rodanina/metabolismo , Relación Estructura-Actividad , Termodinámica , Tiazolidinas/química , Tiazolidinas/metabolismo
14.
Bioorg Med Chem ; 25(12): 3068-3076, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28392277

RESUMEN

Aldose reductase (ALR2), a NADPH-dependent reductase, is the first and rate-limiting enzyme of the polyol pathway of glucose metabolism and is implicated in the pathogenesis of secondary diabetic complications. In the last decades, this enzyme has been targeted for inhibition but despite the numerous efforts made to identify potent and safe ALR2 inhibitors, many clinical candidates have been a failure. For this reason the research of new ALR2 inhibitors highly effective, selective and with suitable pharmacokinetic properties is still of great interest. In this paper some new N-(aroyl)-N-(arylmethyloxy)alanines have been synthesized and tested for their ability to inhibit ALR2. Some of the synthesized compounds exhibit IC50 in the low micromolar range and all have proved to be highly selective towards ALR2. The N-(aroyl)-N-(arylmethyloxy)-α-alanines are a promising starting point for the development of new ALR2 selective drugs with the aim of delaying the onset of diabetic complications.


Asunto(s)
Alanina/análogos & derivados , Alanina/farmacología , Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Aldehído Reductasa/metabolismo , Animales , Complicaciones de la Diabetes/enzimología , Complicaciones de la Diabetes/prevención & control , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ratas
15.
Bioorg Med Chem ; 24(4): 921-7, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26796953

RESUMEN

Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications.


Asunto(s)
Anhidrasa Carbónica I/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Ácidos Carboxílicos/química , Pirazoles/química , Pirimidinas/química , Sulfonamidas/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Cinética , Unión Proteica , Relación Estructura-Actividad , Sulfonamidas/química
16.
Bioorg Med Chem ; 23(4): 810-20, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25596758

RESUMEN

We report herein the synthesis, biological evaluation and docking analysis of a new series of methylsulfonyl, sulfamoyl acetamides and ethyl acetates that selectively inhibit cyclooxygenase-2 (COX-2) isoform. Among the newly synthesized compounds, some of them were endowed with a good activity against COX-2 and a good selectivity COX-2/COX-1 in vitro as well as a desirable analgesic activity in vivo, proving that replacement of the ester moiety with an amide group gave access to more stable derivatives, characterized by a good COX-inhibition.


Asunto(s)
Acetamidas/química , Acetamidas/farmacología , Acetatos/química , Acetatos/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Acetamidas/síntesis química , Acetatos/síntesis química , Analgésicos/síntesis química , Analgésicos/química , Analgésicos/farmacología , Animales , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/síntesis química , Diseño de Fármacos , Humanos , Metilación , Ratones , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Ratas Wistar , Relación Estructura-Actividad , Compuestos de Azufre/síntesis química , Compuestos de Azufre/química , Compuestos de Azufre/farmacología
17.
Proc Natl Acad Sci U S A ; 109(5): 1467-72, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22238423

RESUMEN

An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one.


Asunto(s)
Solventes/química , Algoritmos , Ligandos , Modelos Moleculares , Unión Proteica , Proteínas/química , Proteínas/metabolismo
18.
Expert Opin Ther Pat ; 34(6): 433-463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684444

RESUMEN

INTRODUCTION: The oral cavity harbors an extensive array of over 700 microorganisms, forming the most complex biome of the entire human body, with bacterial species being the most abundant. Oral diseases, e.g. periodontitis and caries, are strictly associated with bacterial dysbiosis. Porphyromonas gingivalis and Streptococcus mutans stand out among bacteria colonizing the oral cavity. AREAS COVERED: After a brief overview of the bacterial populations in the oral cavity and their roles in regulating (flora) oral cavity or causing diseases like periodontal and cariogenic pathogens, we focused our attention on P. gingivalis and S. mutans, searching for the last-5-year patents dealing with the proposal of new strategies to fight their infections. Following the PRISMA protocol, we filtered the results and analyzed over 100 applied/granted patents, to provide an in-depth insight into this R&D scenario. EXPERT OPINION: Several antibacterial proposals have been patented in this period, from both chemical - peptides and small molecules - and biological - probiotics and antibodies - sources, along with natural extracts, polymers, and drug delivery systems. Most of the inventors are from China and Korea and their studies also investigated anti-inflammatory and antioxidant effects, being beneficial to oral health through a prophylactic, protective, or curative effect.


Asunto(s)
Antibacterianos , Boca , Patentes como Asunto , Periodontitis , Porphyromonas gingivalis , Probióticos , Streptococcus mutans , Humanos , Streptococcus mutans/efectos de los fármacos , Porphyromonas gingivalis/efectos de los fármacos , Boca/microbiología , Antibacterianos/farmacología , Probióticos/farmacología , Animales , Periodontitis/microbiología , Periodontitis/tratamiento farmacológico , Caries Dental/microbiología , Caries Dental/prevención & control , Salud Bucal , Disbiosis , Infecciones por Bacteroidaceae/microbiología , Infecciones por Bacteroidaceae/tratamiento farmacológico
19.
Langmuir ; 29(43): 13190-7, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24073802

RESUMEN

A novel drug delivery vector, a free-standing polymeric ultrathin film (nanofilm) composed of PMMA and a polysaccharides multilayer, is presented. Chitosan and sodium alginate are alternatively deposited by spin-assisted LbL assembly onto a plasma-treated PMMA thin film. Hydrophobic anti-inflammatory drugs, an adenosine deaminase inhibitor (APP) and its fluorescent dansyl derivate (APP-Dns), are encapsulated inside the LbL multilayer using a simple casting deposition procedure. The resulting drug loaded nanofilm can be suspended in water upon dissolution of a PVA sacrificial layer. Morphological characterization of the nanofilm shows that PMMA/LbL nanofilms possess nanometric thickness (<200 nm) and very low surface roughness (1-2 nm for drug loaded nanofilms and <1 nm for blank nanofilm). Drug loaded films exhibit a diffusion controlled release mechanism following the Korsmayer-Peppas release model, confirmed by the fit of release data with a characteristic power law. Drug release is impaired through the PMMA layer, which acts effectively as a barrier for drug transport. This ultrathin polymer film can find application as a nanopatch for targeted inflammatory drug delivery to treat localized pathologies as inflammatory bowel disease.


Asunto(s)
Inhibidores de la Adenosina Desaminasa/química , Antiinflamatorios no Esteroideos/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Polimetil Metacrilato/química , Polisacáridos/química , Portadores de Fármacos/química , Cinética , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Pharmaceutics ; 15(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37896129

RESUMEN

A series of new hybrid derivatives 1a-c, 2a-c, 3a-c, 4a-c, 5a-c, inspired by nature, were synthesized and studied as multifunctional agents for the treatment of Alzheimer's disease (AD). These compounds were designed to merge together the trifluoromethyl benzyloxyaminic bioactive moiety, previously identified, with different acids available in nature. The ability of the synthesized compounds to chelate biometals, such as Cu2+, Zn2+ and Fe2+, was studied by UV-Vis spectrometer, and through a preliminary screening their antioxidant activity was evaluated by DPPH. Then, selected compounds were tested by in vitro ABTS free radical method and ex vivo rat brain TBARS assay. Compounds 2a-c, combining the strongest antioxidant and biometal chelators activities, were studied for their ability to contrast Aß1-40 fibrillization process. Finally, starting from the promising profile obtained for compound 2a, we evaluated if it could be able to induce a positive cross-interaction between transthyretin (TTR) and Aß in presence and in absence of Cu2+.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA