Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045627

RESUMEN

Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.

2.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35037016

RESUMEN

Health outcomes are frequently shaped by difficult to dissect inter-relationships between biological, behavioral, social and environmental factors. DNA methylation patterns reflect such multivariate intersections, providing a rich source of novel biomarkers and insight into disease etiologies. Recent advances in whole-genome bisulfite sequencing enable investigation of DNA methylation over all genomic CpGs, but existing bioinformatic approaches lack accessible system-level tools. Here, we develop the R package Comethyl, for weighted gene correlation network analysis of user-defined genomic regions that generates modules of comethylated regions, which are then tested for correlations with multivariate sample traits. First, regions are defined by CpG genomic location or regulatory annotation and filtered based on CpG count, sequencing depth and variability. Next, correlation networks are used to find modules of interconnected nodes using methylation values within the selected regions. Each module containing multiple comethylated regions is reduced in complexity to a single eigennode value, which is then tested for correlations with experimental metadata. Comethyl has the ability to cover the noncoding regulatory regions of the genome with high relevance to interpretation of genome-wide association studies and integration with other types of epigenomic data. We demonstrate the utility of Comethyl on a dataset of male cord blood samples from newborns later diagnosed with autism spectrum disorder (ASD) versus typical development. Comethyl successfully identified an ASD-associated module containing regions mapped to genes enriched for brain glial functions. Comethyl is expected to be useful in uncovering the multivariate nature of health disparities for a variety of common disorders. Comethyl is available at github.com/cemordaunt/comethyl with complete documentation and example analyses.


Asunto(s)
Trastorno del Espectro Autista , Epigenoma , Trastorno del Espectro Autista/genética , Islas de CpG , Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Masculino
3.
Hum Genomics ; 17(1): 92, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803336

RESUMEN

BACKGROUND: Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS: We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS: We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS: A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Humanos , Masculino , Recién Nacido , Femenino , Síndrome de Down/genética , Epigenómica , Metilación de ADN/genética , Epigénesis Genética , Cardiopatías Congénitas/genética , Islas de CpG/genética , Cromatina
4.
Mol Psychiatry ; 28(5): 1890-1901, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36650278

RESUMEN

Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.


Asunto(s)
Trastorno del Espectro Autista , Niño , Embarazo , Recién Nacido , Femenino , Humanos , Trastorno del Espectro Autista/genética , Epigenómica , Epigénesis Genética/genética , Metilación de ADN/genética , Cromatina
5.
Hum Mol Genet ; 29(21): 3465-3476, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33001180

RESUMEN

Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q < 0.05) differentially methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q < 0.05) enriched across tissues while the hypomethylated DS DMRs were significantly (q < 0.05) enriched for blood-specific chromatin states. A ~28 kb block of hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor whose binding motif was the most significantly enriched (q < 0.05) overall and specifically within the hypomethylated DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic dysregulation resulting from trisomy 21.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Metilación de ADN , Síndrome de Down/diagnóstico , Pruebas con Sangre Seca/métodos , Epigénesis Genética , Genoma Humano , Sulfitos/química , Biomarcadores/sangre , Estudios de Casos y Controles , Islas de CpG , Síndrome de Down/genética , Femenino , Estudios de Seguimiento , Regulación de la Expresión Génica , Humanos , Recién Nacido , Masculino , Pronóstico , Estudios Retrospectivos , Secuenciación Completa del Genoma
6.
Environ Res ; 220: 115227, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608759

RESUMEN

BACKGROUND: Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES: We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS: We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS: PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS: Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.


Asunto(s)
Trastorno del Espectro Autista , Bifenilos Policlorados , Animales , Ratones , Humanos , Niño , Femenino , Embarazo , Bifenilos Policlorados/análisis , Placenta/química , Metilación de ADN , Exposición Materna/efectos adversos
7.
Matern Child Health J ; 27(7): 1254-1263, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029891

RESUMEN

INTRODUCTION: Pregnancy is a time of increased vulnerability to mental health disorders. Additionally, the COVID-19 pandemic has increased the incidence of depression and anxiety. Thus, we aimed to assess mental health and associated healthy behaviors of pregnant people in California during the pandemic in order to contextualize prenatal well-being during the first pandemic of the twenty-first century. METHODS: We conducted an online cross-sectional study of 433 pregnant people from June 6 through July 29, 2020. We explored 3 hypotheses: (1) mental health would be worse during the pandemic than in general pregnant samples to date; (2) first-time pregnant people would have worse mental health; and (3) healthy behaviors would be positively related to mental health. RESULTS: Many of our participants (22%) reported clinically significant depressive symptoms and 31% reported clinically significant anxiety symptoms. Multiparous pregnant people were more likely to express worries about their own health and wellbeing and the process of childbirth than were primiparous pregnant people. Additionally, as pregnancy advanced, sleep and nutrition worsened, while physical activity increased. Lastly, anxious-depressive symptomology was significantly predictive of participant sleep behaviors, nutrition, and physical activity during the past week. DISCUSSION: Pregnant people had worse mental health during the pandemic, and this was associated with worse health-promoting behaviors. Given that the COVID-19 pandemic and associated risks are likely to persist due to low vaccination rates and the emergence of variants with high infection rates, care that promotes mental and physical well-being for the pregnant population should be a public health priority.


Asunto(s)
COVID-19 , Pandemias , Femenino , Embarazo , Humanos , Estudios Transversales , COVID-19/epidemiología , Conductas Relacionadas con la Salud , California/epidemiología , Ansiedad/epidemiología , Depresión/epidemiología
8.
Hum Mol Genet ; 28(22): 3842-3852, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31625566

RESUMEN

Ubiquitin E3 ligase 3A (UBE3A) encodes an E3 ubiquitin ligase whose loss from the maternal allele causes the neurodevelopmental disorder Angelman syndrome (AS). Previous studies of UBE3A function have not examined full Ube3a deletion in mouse, the complexity of imprinted gene networks in brain nor the molecular basis of systems-level cognitive dysfunctions in AS. We therefore utilized a systems biology approach to elucidate how UBE3A loss impacts the early postnatal brain in a novel CRISPR/Cas9-engineered rat Angelman model of a complete Ube3a deletion. Strand-specific transcriptome analysis of offspring from maternally or paternally inherited Ube3a deletions revealed the expected parental expression patterns of Ube3a sense and antisense transcripts by postnatal day 2 (P2) in hypothalamus and day 9 (P9) in cortex, compared to wild-type littermates. The dependency of genome-wide effects on parent-of-origin, Ube3a genotype and time (P2 and P9) was investigated through transcriptome (RNA sequencing of cortex and hypothalamus) and methylome (whole-genome bisulfite sequencing of hypothalamus). Weighted gene co-expression and co-methylation network analyses identified co-regulated networks in maternally inherited Ube3a deletion offspring enriched in postnatal developmental processes including Wnt signaling, synaptic regulation, neuronal and glial functions, epigenetic regulation, ubiquitin, circadian entrainment and splicing. Furthermore, we showed that loss of the paternal Ube3a antisense transcript resulted in both unique and overlapping dysregulated gene pathways with maternal loss, predominantly at the level of differential methylation. Together, these results provide a holistic examination of the molecular impacts of UBE3A loss in brain, supporting the existence of interactive epigenetic networks between maternal and paternal transcripts at the Ube3a locus.


Asunto(s)
Impresión Genómica , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Epigénesis Genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Hipotálamo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/genética , Sinapsis/metabolismo , Biología de Sistemas , Transcriptoma , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt
9.
Hum Mol Genet ; 28(16): 2659-2674, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31009952

RESUMEN

DNA methylation acts at the interface of genetic and environmental factors relevant for autism spectrum disorder (ASD). Placenta, normally discarded at birth, is a potentially rich source of DNA methylation patterns predictive of ASD in the child. Here, we performed whole methylome analyses of placentas from a prospective study MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) of high-risk pregnancies. A total of 400 differentially methylated regions (DMRs) discriminated placentas stored from children later diagnosed with ASD compared to typically developing controls. These ASD DMRs were significantly enriched at promoters, mapped to 596 genes functionally enriched in neuronal development, and overlapped genetic ASD risk. ASD DMRs at CYP2E1 and IRS2 reached genome-wide significance, replicated by pyrosequencing and correlated with expression differences in brain. Methylation at CYP2E1 associated with both ASD diagnosis and genotype within the DMR. In contrast, methylation at IRS2 was unaffected by within DMR genotype but modified by preconceptional maternal prenatal vitamin use. This study therefore identified two potentially useful early epigenetic markers for ASD in placenta.


Asunto(s)
Trastorno Autístico/etiología , Citocromo P-450 CYP2E1/genética , Metilación de ADN , Proteínas Sustrato del Receptor de Insulina/genética , Exposición Materna , Placenta/metabolismo , Efectos Tardíos de la Exposición Prenatal , Trastorno del Espectro Autista/etiología , Trastorno Autístico/metabolismo , Biomarcadores , Cadherinas/metabolismo , Estudios de Casos y Controles , Niño , Susceptibilidad a Enfermedades , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Embarazo , Riesgo , Transducción de Señal , Proteínas Wnt/metabolismo
10.
Nat Rev Neurosci ; 17(7): 411-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27150399

RESUMEN

Increasing evidence points to a complex interplay between genes and the environment in autism spectrum disorder (ASD), including rare de novo mutations in chromatin genes such as methyl-CpG binding protein 2 (MECP2) in Rett syndrome. Epigenetic mechanisms such as DNA methylation act at this interface, reflecting the plasticity in metabolic and neurodevelopmentally regulated gene pathways. Genome-wide studies of gene sequences, gene pathways and DNA methylation are providing valuable mechanistic insights into ASD. The dynamic developmental landscape of DNA methylation is vulnerable to numerous genetic and environmental insults: therefore, understanding pathways that are central to this 'perfect storm' will be crucial to improving the diagnosis and treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Síndrome de Rett/genética , Animales , Cromatina/metabolismo , Humanos
11.
Hum Mol Genet ; 27(23): 4051-4060, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124848

RESUMEN

Prader-Willi syndrome (PWS), an imprinted neurodevelopmental disorder characterized by metabolic, sleep and neuropsychiatric features, is caused by the loss of paternal SNORD116, containing only non-coding RNAs (ncRNAs). The primary SNORD116 transcript is processed into small nucleolar RNAs (snoRNAs), which localize to nucleoli, and their spliced host gene 116HG, which is retained at its site of transcription. While functional complementation of the SNORD116 ncRNAs is a desirable goal for treating PWS, the mechanistic requirements of SNORD116 RNA processing are poorly understood. Here we developed and tested a novel transgenic mouse which ubiquitously expresses Snord116 on both a wild-type and a Snord116 paternal deletion (Snord116+/-) background. Interestingly, while the Snord116 transgene was ubiquitously expressed in multiple tissues, splicing of the transgene and production of snoRNAs was limited to brain tissues. Knockdown of Rbfox3, encoding neuron-specific splicing factor neuronal nuclei (NeuN) in Snord116+/--derived neurons, reduced splicing of the transgene in neurons. RNA fluorescence in situ hybridization for 116HG revealed a single significantly larger signal in transgenic mice, demonstrating colocalization of transgenic and endogenous 116HG RNAs. Similarly, significantly increased snoRNA levels were detected in transgenic neuronal nucleoli, indicating that transgenic Snord116 snoRNAs were effectively processed and localized. In contrast, neither transgenic 116HG nor snoRNAs were detectable in either non-neuronal tissues or Snord116+/- neurons. Together, these results demonstrate that exogenous expression and neuron-specific splicing of the Snord116 locus are insufficient to rescue the genetic deficiency of Snord116 paternal deletion. Elucidating the mechanisms regulating Snord116 processing and localization is essential to develop effective gene replacement therapies for PWS.


Asunto(s)
Impresión Genómica/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Síndrome de Prader-Willi/genética , ARN Nucleolar Pequeño/genética , Alelos , Empalme Alternativo/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Síndrome de Prader-Willi/fisiopatología , Eliminación de Secuencia/genética , Sueño/genética , Sueño/fisiología
12.
Hum Mol Genet ; 27(23): 4077-4093, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137367

RESUMEN

Mutations in the X-linked gene MECP2 cause the majority of Rett syndrome (RTT) cases. Two differentially spliced isoforms of exons 1 and 2 (MeCP2-e1 and MeCP2-e2) contribute to the diverse functions of MeCP2, but only mutations in exon 1, not exon 2, are observed in RTT. We previously described an isoform-specific MeCP2-e1-deficient male mouse model of a human RTT mutation that lacks MeCP2-e1 while preserving expression of MeCP2-e2. However, RTT patients are heterozygous females that exhibit delayed and progressive symptom onset beginning in late infancy, including neurologic as well as metabolic, immune, respiratory and gastrointestinal phenotypes. Consequently, we conducted a longitudinal assessment of symptom development in MeCP2-e1 mutant females and males. A delayed and progressive onset of motor impairments was observed in both female and male MeCP2-e1 mutant mice, including hind limb clasping and motor deficits in gait and balance. Because these motor impairments were significantly impacted by age-dependent increases in body weight, we also investigated metabolic phenotypes at an early stage of disease progression. Both male and female MeCP2-e1 mutants exhibited significantly increased body fat compared to sex-matched wild-type littermates prior to weight differences. Mecp2e1-/y males exhibited significant metabolic phenotypes of hypoactivity, decreased energy expenditure, increased respiratory exchange ratio, but decreased food intake compared to wild-type. Untargeted analysis of lipid metabolites demonstrated a distinguishable profile in MeCP2-e1 female mutant liver characterized by increased triglycerides. Together, these results demonstrate that MeCP2-e1 mutation in mice of both sexes recapitulates early and progressive metabolic and motor phenotypes of human RTT.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Actividad Motora/genética , Síndrome de Rett/genética , Animales , Modelos Animales de Enfermedad , Exones/genética , Femenino , Regulación de la Expresión Génica/genética , Heterocigoto , Humanos , Masculino , Ratones , Actividad Motora/fisiología , Mutación , Fenotipo , Isoformas de Proteínas/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología
13.
Hum Mol Genet ; 27(22): 3854-3869, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30010856

RESUMEN

Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, leading to copper accumulation in the liver and brain. Excess copper inhibits S-adenosyl-L-homocysteine hydrolase, leading to variable WD phenotypes from widespread alterations in DNA methylation and gene expression. Previously, we demonstrated that maternal choline supplementation in the Jackson toxic milk (tx-j) mouse model of WD corrected higher thioredoxin 1 (TNX1) transcript levels in fetal liver. Here, we investigated the effect of maternal choline supplementation on genome-wide DNA methylation patterns in tx-j fetal liver by whole-genome bisulfite sequencing (WGBS). Tx-j Atp7b genotype-dependent differences in DNA methylation were corrected by choline for genes including, but not exclusive to, oxidative stress pathways. To examine phenotypic effects of postnatal choline supplementation, tx-j mice were randomized to one of six treatment groups: with or without maternal and/or continued choline supplementation, and with or without copper chelation with penicillamine (PCA) treatment. Hepatic transcript levels of TXN1 and peroxiredoxin 1 (Prdx1) were significantly higher in mice receiving maternal and continued choline with or without PCA treatment compared to untreated mice. A WGBS comparison of human WD liver and tx-j mouse liver demonstrated a significant overlap of differentially methylated genes associated with ATP7B deficiency. Further, eight genes in the thioredoxin (TXN) pathway were differentially methylated in human WD liver samples. In summary, Atp7b deficiency and choline supplementation have a genome-wide impact, including on TXN system-related genes, in tx-j mice. These findings could explain the variability of WD phenotype and suggest new complementary treatment options for WD.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , Epigénesis Genética/genética , Degeneración Hepatolenticular/genética , Peroxirredoxinas/genética , Tiorredoxinas/genética , Animales , Quelantes/administración & dosificación , Colina/administración & dosificación , Cobre/administración & dosificación , Metilación de ADN/genética , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/patología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Herencia Materna , Ratones , Estrés Oxidativo/efectos de los fármacos , Penicilamina/administración & dosificación , Embarazo , Transducción de Señal/efectos de los fármacos , Secuenciación Completa del Genoma
14.
Hum Genet ; 139(8): 1077-1090, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32266521

RESUMEN

Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10-8): rs781716 (P = 4.71 × 10-9; odds ratio [OR] = 2.44) intronic to SPRY3; rs6127972 (P = 4.41 × 10-8; OR = 2.17) intronic to BMP7; rs62590971 (P = 6.22 × 10-9; OR = 0.34), located ~ 155 kb upstream from TGIF2LX; and rs2522623, rs2573826, and rs2754857, all intronic to PCDH11X (P = 1.76 × 10-8, OR = 0.45; P = 3.31 × 10-8, OR = 0.45; P = 1.09 × 10-8, OR = 0.44, respectively). We performed a replication study of these variants using an independent non-Hispanic white sample of 194 unrelated mNCS cases and 333 unaffected controls; only the association for rs6127972 (P = 0.004, OR = 1.45; meta-analysis P = 1.27 × 10-8, OR = 1.74) was replicated. Our meta-analysis examining single nucleotide polymorphisms common to both our mNCS and sNCS studies showed the strongest association for rs6127972 (P = 1.16 × 10-6). Our imputation analysis identified a linkage disequilibrium block encompassing rs6127972, which contained an enhancer overlapping a CTCF transcription factor binding site (chr20:55,798,821-55,798,917) that was significantly hypomethylated in mesenchymal stem cells derived from fused metopic compared to open sutures from the same probands. This study provides additional insights into genetic factors in midline CS.


Asunto(s)
Proteína Morfogenética Ósea 7/genética , Craneosinostosis/genética , Variación Genética , Polimorfismo de Nucleótido Simple/genética , Alelos , Metilación de ADN , Genes Reporteros , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Intrones/genética , Desequilibrio de Ligamiento , Regiones Promotoras Genéticas/genética , Factores de Riesgo
15.
Brain Behav Immun ; 89: 20-31, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32454135

RESUMEN

The BTBR T+Itpr3tf/J (BTBR) mouse has been used as a complex genetic model of Autism Spectrum Disorders (ASD). While the specific mechanisms underlying BTBR behavioral phenotypes are poorly understood, prior studies have implicated profound differences in innate immune system control of pro-inflammatory cytokines. Innate immune activation and elevated pro-inflammatory cytokines are also detected in blood of children with ASD. In this study, we examined how underlying BTBR genetic variants correspond to strain-specific changes in chromatin accessibility, resulting in a pro-inflammatory response specifically in BTBR bone marrow derived macrophages (BMDM). In response to repeated lipopolysaccharide (LPS) treatments, C57BL/6J (C57) BMDM exhibited intact endotoxin tolerance. In contrast, BTBR BMDM exhibited hyper-responsive expression of genes that were normally tolerized in C57. This failure in formation of endotoxin tolerance in BTBR was mirrored at the level of chromatin accessibility. Using ATAC-seq, we specifically identified promoter and enhancer regions with strain-specific differential chromatin accessibility both at baseline and in response to LPS. Regions with strain-specific differences in chromatin accessibility were significantly enriched for BTBR genetic variants, such that an average of 22% of the differential chromatin regions had at least one variant. Together, these results demonstrate that BTBR genetic variants contribute to altered chromatin responsiveness to endotoxin challenge resulting in hyper-responsive innate immunity in BTBR. These findings provide evidence for an interaction between complex genetic variants and differential epigenetic regulation of innate immune responses.


Asunto(s)
Endotoxinas , Epigénesis Genética , Animales , Modelos Animales de Enfermedad , Macrófagos , Ratones , Ratones Endogámicos C57BL
16.
Liver Int ; 40(11): 2776-2787, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32996699

RESUMEN

BACKGROUND AND AIMS: Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, with its main pathology attributed to copper-mediated oxidative damage. The limited therapeutic effect of copper chelators and the early occurrence of mitochondrial deficits, however, undermine the prevalence of this mechanism. METHODS: We characterized mitochondrial DNA copy number and mutations as well as bioenergetic deficits in blood from patients with WD and in livers of tx-j mice, a mouse model of hepatic copper accumulation. In vitro experiments with hepatocytes treated with CuSO4 were conducted to validate in vivo studies. RESULTS: Here, for the first time, we characterized the bioenergetic deficits in WD as consistent with a mitochondrial DNA depletion-like syndrome. This is evidenced by enriched DNA synthesis/replication pathways in serum metabolomics and decreased mitochondrial DNA copy number in blood of WD patients as well as decreased mitochondrial DNA copy number, increased citrate synthase activity, and selective Complex IV deficit in livers of the tx-j mouse model of WD. Tx-j mice treated with the copper chelator penicillamine, methyl donor choline or both ameliorated mitochondrial DNA damage but further decreased mitochondrial DNA copy number. Experiments with copper-loaded HepG2 cells validated the concept of a direct copper-mitochondrial DNA interaction. CONCLUSIONS: This study underlines the relevance of targeting the copper-mitochondrial DNA pool in the treatment of WD separate from the established copper-induced oxidative stress-mediated damage.


Asunto(s)
Degeneración Hepatolenticular , Animales , Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , ADN Mitocondrial/genética , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/genética , Humanos , Hígado/metabolismo , Ratones , Penicilamina
17.
Hum Mol Genet ; 26(10): 1839-1854, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28334953

RESUMEN

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) that occur sporadically in 1:10,000 female births. RTT is characterized by a period of largely normal development followed by regression in language and motor skills at 6-18 months of age. Mecp2 mutant mice recapitulate many of the clinical features of RTT, but the majority of behavioral assessments have been conducted in male Mecp2 hemizygous null mice as offspring of heterozygous dams. Given that RTT patients are predominantly female, we conducted a systematic analysis of developmental milestones, sensory abilities, and motor deficits, following the longitudinal decline of function from early postnatal to adult ages in female Mecp2 heterozygotes of the conventional Bird line (Mecp2tm1.1bird-/+), as compared to their female wildtype littermate controls. Further, we assessed the impact of postnatal maternal environment on developmental milestones and behavioral phenotypes. Cross-fostering to CD1 dams accelerated several developmental milestones independent of genotype, and induced earlier onset of weight gain in adult female Mecp2tm1.1bird-/+ mice. Cross-fostering improved the sensitivity of a number of motor behaviors that resulted in observable deficits in Mecp2tm1.1bird-/+ mice at much earlier (6-7 weeks) ages than were previously reported (6-9 months). Our findings indicate that female Mecp2tm1.1bird-/+ mice recapitulate many of the motor aspects of RTT syndrome earlier than previously appreciated. In addition, rearing conditions may impact the phenotypic severity and improve the ability to detect genotype differences in female Mecp2 mutant mice.


Asunto(s)
Síndrome de Rett/diagnóstico , Animales , Conducta Animal , Modelos Animales de Enfermedad , Ambiente , Femenino , Estudios de Asociación Genética , Genotipo , Heterocigoto , Masculino , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Noqueados , Destreza Motora/fisiología , Fenotipo , Síndrome de Rett/genética , Síndrome de Rett/veterinaria
18.
Hum Mol Genet ; 26(20): 3995-4010, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016856

RESUMEN

Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∼40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders.


Asunto(s)
Discapacidad Intelectual/enzimología , Neuronas/enzimología , Ubiquitina-Proteína Ligasas/biosíntesis , Animales , Trastorno de Personalidad Antisocial/genética , Trastorno de Personalidad Antisocial/metabolismo , Ansiedad/genética , Ansiedad/metabolismo , Aberraciones Cromosómicas , Cromosomas Humanos Par 15/enzimología , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 15/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Convulsiones/genética , Convulsiones/metabolismo , Ubiquitina-Proteína Ligasas/genética
19.
Trends Genet ; 32(3): 139-146, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26830258

RESUMEN

Autism is a neurodevelopmental disorder, diagnosed behaviorally by social and communication deficits, repetitive behaviors, and restricted interests. Recent genome-wide exome sequencing has revealed extensive overlap in risk genes for autism and for cancer. Understanding the genetic commonalities of autism(s) and cancer(s), with a focus on mechanistic pathways, could lead to repurposed therapeutics.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad , Neoplasias/genética , Humanos
20.
Neurobiol Learn Mem ; 165: 106874, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29800646

RESUMEN

Prader-Willi syndrome (PWS) is an imprinted neurodevelopmental disease caused by a loss of paternal genes on chromosome 15q11-q13. It is characterized by cognitive impairments, developmental delay, sleep abnormalities, and hyperphagia often leading to obesity. Clinical research has shown that a lack of expression of SNORD116, a paternally expressed imprinted gene cluster that encodes multiple copies of a small nucleolar RNA (snoRNA) in both humans and mice, is most likely responsible for many PWS symptoms seen in humans. The majority of previous research using PWS preclinical models focused on characterization of the hyperphagic and metabolic phenotypes. However, a crucial understudied clinical phenotype is cognitive impairments and thus we investigated the learning and memory abilities using a model of PWS, with a heterozygous deletion in Snord116. We utilized the novel object recognition task, which doesn't require external motivation, or exhaustive swim training. Automated findings were further confirmed with manual scoring by a highly trained blinded investigator. We discovered deficits in Snord116+/- mutant mice in the novel object recognition, location memory and tone cue fear conditioning assays when compared to age-, sex- matched, littermate control Snord116+/+ mice. Further, we confirmed that despite physical neo-natal developmental delays, Snord116+/- mice had normal exploratory and motor abilities. These results show that the Snord116+/- deletion murine model is a valuable preclinical model for investigating learning and memory impairments in individuals with PWS without common confounding phenotypes.


Asunto(s)
Disfunción Cognitiva/genética , Eliminación de Gen , Síndrome de Prader-Willi/genética , ARN Nucleolar Pequeño/genética , Animales , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Humanos , Ratones , Síndrome de Prader-Willi/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA