Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Life Sci ; 78(14): 5569-5585, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34089345

RESUMEN

The macrophage mannose receptor (CD206, MR) is an endocytic lectin receptor which plays an important role in homeostasis and innate immunity, however, the endogenous glycan and glycoprotein ligands recognized by its C-type lectin domains (CTLD) have not been well studied. Here we used the murine MR CTLD4-7 coupled to the Fc-portion of human IgG (MR-Fc) to investigate the MR glycan and glycoprotein recognition. We probed 16 different cancer and control tissues using the MR-Fc, and observed cell- and tissue-specific binding with varying intensity. All cancer tissues and several control tissues exhibited MR-Fc ligands, intracellular and/or surface-located. We further confirmed the presence of ligands on the surface of cancer cells by flow cytometry. To characterize the fine specificity of the MR for glycans, we screened a panel of glycan microarrays. Remarkably, the results indicate that the CTLD4-7 of the MR is highly selective for specific types of pauci- and oligomannose N-glycans among hundreds of glycans tested. As lung cancer tissue and the lung cancer cell line A549 showed intense MR-Fc binding, we further investigated the MR glycoprotein ligands in those cells by immunoprecipitation and glycoproteomic analysis. All enriched glycoproteins, of which 42 were identified, contained pauci- or oligomannose N-glycans, confirming the microarray results. Our study demonstrates that the MR CTLD4-7 is highly selective for pauci- and oligomannosidic N-glycans, structures that are often elevated in tumor cells, and suggest a potential role for the MR in tumor biology.


Asunto(s)
Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/patología , Lectinas de Unión a Manosa/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo , Células A549 , Glicoproteínas/genética , Glicosilación , Humanos , Lectinas Tipo C/genética , Ligandos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Modelos Moleculares , Receptores de Superficie Celular/genética
2.
FASEB J ; 31(2): 719-731, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27806992

RESUMEN

Clinical trials have shown that administration of the nematode Trichuris suis can be beneficial in treating various immune disorders. To provide insight into the mechanisms by which this worm suppresses inflammatory responses, an active component was purified from T. suis soluble products (TsSPs) that suppress---- TNF and IL-12 secretion from LPS-activated human dendritic cells (DCs). Analysis by liquid chromatography tandem mass spectrometry identified this compound as prostaglandin (PG)E2. The purified compound showed similar properties compared with TsSPs and commercial PGE2 in modulating LPS-induced expression of many cytokines and chemokines and in modulating Rab7B and P2RX7 expression in human DCs. Furthermore, the TsSP-induced reduction of TNF secretion from DCs is reversed by receptor antagonists for EP2 and EP4, indicating PGE2 action. T. suis secretes extremely high amounts of PGE2 (45-90 ng/mg protein) within their excretory/secretory products but few related lipid mediators as established by metabololipidomic analysis. Culture of T. suis with several cyclooxygenase (COX) inhibitors that inhibit mammalian prostaglandin synthesis affected the worm's motility but did not inhibit PGE2 secretion, suggesting that the worms can synthesize PGE2 via a COX-independent pathway. We conclude that T. suis secretes PGE2 to suppress proinflammatory responses in human DCs, thereby modulating the host's immune response.-Laan, L. C., Williams, A. R., Stavenhagen, K., Giera, M., Kooij, G., Vlasakov, I., Kalay, H., Kringel, H., Nejsum, P., Thamsborg, S. M., Wuhrer, M., Dijkstra, C. D., Cummings, R. D., van Die, I. The whipworm (Trichuris suis) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells.


Asunto(s)
Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Inflamación/metabolismo , Trichuris/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipopolisacáridos/toxicidad , Estructura Molecular , Especificidad de la Especie
3.
Immunology ; 150(3): 312-328, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27905107

RESUMEN

Interactions between dendritic cells (DCs) and environmental, dietary and pathogen antigens play a key role in immune homeostasis and regulation of inflammation. Dietary polyphenols such as proanthocyanidins (PAC) may reduce inflammation, and we therefore hypothesized that PAC may suppress lipopolysaccharide (LPS) -induced responses in human DCs and subsequent T helper type 1 (Th1) -type responses in naive T cells. Moreover, we proposed that, because DCs are likely to be exposed to multiple stimuli, the activity of PAC may synergise with other bioactive molecules that have anti-inflammatory activity, e.g. soluble products from the helminth parasite Trichuris suis (TsSP). We show that PAC are endocytosed by monocyte-derived DCs and selectively induce CD86 expression. Subsequently, PAC suppress the LPS-induced secretion of interleukin-6 (IL-6) and IL-12p70, while enhancing secretion of IL-10. Incubation of DCs with PAC did not affect lymphocyte proliferation; however, subsequent interferon-γ production was markedly suppressed, while IL-4 production was unaffected. The activity of PAC was confined to oligomers (degree of polymerization ≥ 4). Co-pulsing DCs with TsSP and PAC synergistically reduced secretion of tumour necrosis factor-α, IL-6 and IL-12p70 while increasing IL-10 secretion. Moreover, both TsSP and PAC alone induced Th2-associated OX40L expression in DCs, and together synergized to up-regulate OX40L. These data suggest that PAC induce an anti-inflammatory phenotype in human DCs that selectively down-regulates Th1 response in naive T cells, and that they also act cooperatively with TsSP. Our results indicate a novel interaction between dietary compounds and parasite products to influence immune function, and may suggest that combinations of PAC and TsSP can have therapeutic potential for inflammatory disorders.


Asunto(s)
Antiinflamatorios/farmacología , Células Dendríticas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Proantocianidinas/farmacología , Células TH1/inmunología , Células Th2/inmunología , Tricuriasis/tratamiento farmacológico , Animales , Antígenos Helmínticos/inmunología , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Quimioterapia Combinada , Humanos , Inflamación/inmunología , Activación de Linfocitos , Ligando OX40/genética , Ligando OX40/metabolismo , Interferencia de ARN , Porcinos , Balance Th1 - Th2/efectos de los fármacos , Tricuriasis/inmunología , Trichuris/inmunología , Regulación hacia Arriba
4.
FASEB J ; 30(8): 2826-36, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27095802

RESUMEN

Helminths have strong immunoregulatory properties that may be exploited in treatment of chronic immune disorders, such as multiple sclerosis and inflammatory bowel disease. Essential players in the pathogenesis of these diseases are proinflammatory macrophages. We present evidence that helminths modulate the function and phenotype of these innate immune cells. We found that soluble products derived from the Trichuris suis (TsSP) significantly affect the differentiation of monocytes into macrophages and their subsequent polarization. TsSPs reduce the expression and production of inflammatory cytokines, including IL-6 and TNF, in human proinflammatory M1 macrophages. TsSPs induce a concomitant anti-inflammatory M2 signature, with increased IL-10 production. Furthermore, they suppress CHIT activity and enhance secretion of matrix metalloproteinase 9. Short-term triggering of monocytes with TsSPs early during monocyte-to-macrophage differentiation imprinted these phenotypic alterations, suggesting long-lasting epigenetic changes. The TsSP-induced effects in M1 macrophages were completely reversed by inhibiting histone deacetylases, which corresponded with decreased histone acetylation at the TNF and IL6 promoters. These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophage differentiation and polarization through epigenetic remodeling and provide new insights into the mechanisms by which helminths modulate human immune responses.-Hoeksema, M. A., Laan, L. C., Postma, J. J., Cummings, R. D., de Winther, M. P. J., Dijkstra, C. D., van Die, I., Kooij, G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/fisiología , Monocitos/fisiología , Trichuris/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas del Helminto , Humanos , Inflamación , Lipopolisacáridos/química , Trichuris/química
5.
J Inflamm Res ; 13: 35-43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021377

RESUMEN

INTRODUCTION: Epidemiological and animal studies indicate that helminth infections have positive effects due to their potential to protect against autoimmune diseases. Here, we aim to assess the effect of S. mansoni infection on immune modulation of human monocytes and their potential protection against autoimmune disease development both in vivo and in vitro. MATERIALS AND METHODS: Monocytes were isolated from helminth-infected Ethiopians (MHIE), and from Dutch healthy volunteers (MHV). The MHV were stimulated in vitro with S. mansoni soluble egg antigens (SEA) or soluble worm antigens (SWA). In addition, phenotypical changes were studied directly, as well as after culturing for 6 days in the presence of human serum to obtain macrophages. Q-PCR, flow cytometry, multiplex bead immunoassay, and live-cell imaging were employed during analysis. RESULTS: MHIE showed elevated transcripts of SOCS-1 and TNF-α compared to MHV. Similarly, MHV that were stimulated with SEA demonstrated enhanced levels of SOCS-1, IL-10, and IL-12 mRNA, compared to control MHV. Remarkably, the SEA-treated monocytes showed a much higher motility than control monocytes, a hallmark of a patrolling phenotype. Furthermore, in vitro cultured macrophages that were stimulated by SEA exhibited enhanced mRNA levels of SOCS-1, IL-10, TNF-α, IL-12 and TGF-ß, compared to control macrophages. CONCLUSION: Macrophages from MHIE as well as SEA-treated MHV show an intermediate activation phenotype with both pro-inflammatory and anti-inflammatory characteristics in vitro. The observed pro-inflammatory properties might reflect a recent response of the cells due to contact with a pathogen, whereas the anti-inflammatory properties might contribute to helminth-induced protection against inflammatory diseases. Large-scale study is recommended to consolidate the findings of the present study.

6.
Front Oncol ; 10: 732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582529

RESUMEN

Changes in the glycosylation profile of cancer cells have been strongly associated with cancer progression. To increase our insights into the role of glycosylation in human pancreatic ductal adenocarcinoma (PDAC), we performed a study on O-glycans and glycosphingolipid (GSL) glycans of the PDAC cell lines Pa-Tu-8988T (PaTu-T) and Pa-Tu-8988S (PaTu-S). These cell lines are derived from the same patient, but show an almost opposite phenotype, morphology and capacity to metastasize, and may thus provide an attractive model to study the role of glycosylation in progression of PDAC. Gene-array analysis revealed that 24% of the glycosylation-related genes showed a ≥ 1.5-fold difference in expression level between the two cell lines. Subsequent validation of the data by porous graphitized carbon nano-liquid chromatography coupled to a tandem ion trap mass spectrometry and flow cytometry established major differences in O-glycans and GSL-glycans between the cell lines, including lower levels of T and sialylated Tn (sTn) antigens, neoexpression of globosides (Gb3 and Gb4), and higher levels of gangliosides in the mesenchymal-like PaTu-T cells compared to the epithelial-like PaTu-S. In addition, PaTu-S cells demonstrated a significantly higher binding of the immune-lectins macrophage galactose-type lectin and galectin-4 compared to PaTu-T. In summary, our data provide a comprehensive and differential glycan profile of two PDAC cell lines with disparate phenotypes and metastatic behavior. This will allow approaches to modulate and monitor the glycosylation of these PDAC cell lines, which opens up avenues to study the biology and metastatic behavior of PDAC.

7.
Int J Biol Macromol ; 122: 705-712, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30392853

RESUMEN

Polysaccharides from edible mushrooms possess important immunomodulating effects on immune cells including monocytes and macrophages. Macrophages activated by LPS/IFNγ are polarized toward inflammatory macrophages, whereas the anti-inflammatory properties of alternative activated macrophages play an important regulatory role in the innate immune system. We here show that the Pleurotus citrinopileatus mushroom polysaccharide (PCPS) can modulate the monocyte-to-macrophage differentiation early at the monocyte stage. Using both human THP-1 monocytic cells as well as human peripheral monocytes, we showed that PCPS inhibits the secreted levels of the pro-inflammatory cytokines TNF and IL-6, after stimulation of macrophages derived from PCPS-treated monocytes, with IFNγ + LPS. In addition, the glucan induced a tendency to increase the secreted levels of the anti-inflammatory cytokine IL-10, enhanced the expression levels of CCL2 and CCL8 mRNAs, and inhibited expression of CCR2 mRNA in the IFNγ/LPS activated macrophages. Interestingly, these data suggest that PCPS can induce a long-lasting anti-inflammatory effect in monocytes. Treatment of monocytes with laminarin and antibodies against Dectin-1 and TLR2 during PCPS treatment affected the glucan-modulated macrophage differentiation. In summary, the results of this study indicate that the glucan directs the differentiation of monocytes toward a macrophage cell population with reduced pro-inflammatory capacity via Dectin-1 and TLR2.


Asunto(s)
Antiinflamatorios/farmacología , Diferenciación Celular/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Macrófagos/citología , Monocitos/citología , Pleurotus/química , Línea Celular , Quimiocinas/biosíntesis , Humanos , Interferón gamma/farmacología , Lectinas Tipo C/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/efectos de los fármacos , Fenotipo , Transducción de Señal/efectos de los fármacos
8.
Int Immunopharmacol ; 40: 156-163, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27592080

RESUMEN

Many edible mushrooms have become attractive as "health foods" and as source materials for immunomodulators. To increase our insight in the immune-modulatory properties of a polysaccharide of the oyster mushroom Pleurotus citrinopileatus, PCPS, we analyzed its effects on the function of human dendritic cells (DCs). We showed that PCPS induces upregulation of the surface maturation markers CD80, CD86 and HLA-DR on DCs, indicating its potential to induce DC maturation. In addition, PCPS stimulates DCs to secrete the pro-inflammatory cytokines TNF, IL-1ß, IL-6 and IL-12, as well as the anti-inflammatory cytokine IL-10, and induces enhanced mRNA levels of the chemokines CCL2, CCL3, CCL8, CXCL9, CXCL10, and LTA. The secretion of TNF and IL-12 by PCPS-activated DCs could significantly be decreased by an anti-Dectin-1 antibody, as well as by a Syk kinase and a Raf-1 inhibitor, indicating that PCPS induces Dectin-1 signaling at least partly through the Syk- and the Raf-1-dependent pathways in DCs. Structural analysis of PCPS suggests that this polysaccharide is a ß-1,3-branched ß-1,6-glucan, which is in line with its capacity to activate Dectin-1. We showed that PCPS can induce TLR2 and TLR4, but not TLR3, signaling using TLR-HEK293 reporter cell lines. In human DCs, the effect of PCPS was additively increased by TLR4 activation, and synergistically enhanced by stimulation of TLR2, suggesting that interaction of PCPS with these TLRs contributes to the observed DC modulation. In conclusion, PCPS has the capacity to activate human DCs via multiple pathways.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Factores Inmunológicos/farmacología , Pleurotus , Células Cultivadas , Citocinas/genética , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Lectinas Tipo C/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
9.
FEBS Lett ; 589(18): 2359-66, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26232512

RESUMEN

The α1,2-fucosyltransferase activity in pancreatic tumors is much lower compared to normal pancreatic tissue. Here we show that hypoxia inducible factor (HIF) 1α is constitutively expressed in the pancreatic cancer cell lines Pa-Tu-8988S and Pa-Tu-8988T and suppresses the expression of the α1,2-fucosyltransferase genes FUT1 and FUT2. Down regulation of HIF-1α expression resulted in elevated FUT1 and FUT2 transcript levels and an increased expression of α1,2-fucosylated glycan structures on the surface of these cells. In conclusion, our data are the first to identify HIF-1α as a suppressor of FUT1/2 expression, thereby regulating α1,2-fucosylation of cell-surface glycans.


Asunto(s)
Adenocarcinoma/patología , Regulación hacia Abajo , Fucosa/metabolismo , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pancreáticas/patología , Polisacáridos/metabolismo , Línea Celular Tumoral , Fucosiltransferasas/genética , Glicosilación , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , ARN Mensajero/genética , Galactósido 2-alfa-L-Fucosiltransferasa , Neoplasias Pancreáticas
10.
Acta Neuropathol Commun ; 3: 45, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26205402

RESUMEN

INTRODUCTION: The inverse correlation between prevalence of auto-immune disorders like the chronic neuro-inflammatory disease multiple sclerosis (MS) and the occurrence of helminth (worm) infections, suggests that the helminth-trained immune system is protective against auto-immunity. As monocytes are regarded as crucial players in the pathogenesis of auto-immune diseases, we explored the hypothesis that these innate effector cells are prime targets for helminths to exert their immunomodulatory effects. RESULTS: Here we show that soluble products of the porcine nematode Trichuris suis (TsSP) are potent in changing the phenotype and function of human monocytes by skewing classical monocytes into anti-inflammatory patrolling cells, which exhibit reduced trans-endothelial migration capacity in an in vitro model of the blood-brain barrier. Mechanistically, we identified the mannose receptor as the TsSP-interacting monocyte receptor and we revealed that specific downstream signalling occurs via protein kinase C (PKC), and in particular PKCδ. CONCLUSION: This study provides comprehensive mechanistic insight into helminth-induced immunomodulation, which can be therapeutically exploited to combat various auto-immune disorders.


Asunto(s)
Inflamación/parasitología , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Monocitos/fisiología , Monocitos/parasitología , Proteína Quinasa C/metabolismo , Receptores de Superficie Celular/metabolismo , Trichuris/fisiología , Animales , Antígenos CD/metabolismo , Movimiento Celular/fisiología , Citocinas/metabolismo , Citometría de Flujo , Humanos , Inflamación/patología , Receptor de Manosa
11.
Int J Parasitol ; 43(3-4): 191-200, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23220043

RESUMEN

Human monocyte-derived dendritic cells (DCs) show remarkable phenotypic changes upon direct contact with soluble products (SPs) of Trichuris suis, a pig whipworm that is experimentally used in therapies to ameliorate inflammation in patients with Crohn's disease and multiple sclerosis. These changes may contribute to the observed induction of a T helper 2 (Th2) response and the suppression of Toll-like receptor (TLR)-induced Th1 and Th17 responses by human DCs primed with T. suis SPs. Here it is demonstrated that glycans of T. suis SPs contribute significantly to the suppression of the lipopolysaccharide (LPS)-induced expression in DCs of a broad variety of cytokines and chemokines, including important pro-inflammatory mediators such as TNF-α, IL-6, IL-12, lymphotoxin α (LTA), C-C Motif Ligand (CCL)2, C-X-C Motif Ligands (CXCL)9 and CXCL10. In addition, the data show that human DCs strongly bind T. suis SP-glycans via the C-type lectin receptors (CLRs) mannose receptor (MR) and DC-specific ICAM-3-grabbing non-integrin (DC-SIGN). The interaction of DCs with T. suis glycans likely involves mannose-type glycans, rather than fucosylated glycans, which differs from DC binding to soluble egg antigens of the human worm parasite, Schistosoma mansoni. In addition, macrophage galactose-type lectin (MGL) recognises T. suis SPs, which may contribute to the interaction with immature DCs or other MGL-expressing immune cells such as macrophages. The interaction of T. suis glycans with CLRs of human DCs may be essential for the ability of T. suis to suppress a pro-inflammatory phenotype of human DCs. The finding that the T. suis-induced modulation of human DC function is glycan-mediated is novel and indicates that helminth glycans contribute to the dampening of inflammation in a wide range of human inflammatory diseases.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/parasitología , Polisacáridos/inmunología , Tricuriasis/inmunología , Trichuris/inmunología , Animales , Células Cultivadas , Quimiocinas/genética , Quimiocinas/inmunología , Citocinas/genética , Citocinas/inmunología , Humanos , Tricuriasis/genética , Tricuriasis/parasitología , Trichuris/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA