Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hear Res ; 349: 42-54, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27876480

RESUMEN

Noise exposure and the subsequent hearing loss are well documented aspects of military life. Numerous studies have indicated high rates of noise-induced hearing injury (NIHI) in active-duty service men and women, and recent statistics from the U.S. Department of Veterans Affairs indicate a population of veterans with hearing loss that is growing at an increasing rate. In an effort to minimize hearing loss, the U.S. Department of Defense (DoD) updated its Hearing Conservation Program in 2010, and also has recently revised the DoD Design Criteria Standard Noise Limits (MIL-STD-1474E) which defines allowable noise levels in the design of all military acquisitions including weapons and vehicles. Even with such mandates, it remains a challenge to accurately quantify the noise exposure experienced by a Warfighter over the course of a mission or training exercise, or even in a standard work day. Noise dosimeters are intended for exactly this purpose, but variations in device placement (e.g., free-field, on-body, in/near-ear), hardware (e.g., microphone, analog-to-digital converter), measurement time (e.g., work day, 24-h), and dose metric calculations (e.g., time-weighted energy, peak levels, Auditory Risk Units), as well as noise types (e.g., continuous, intermittent, impulsive) can cause exposure measurements to be incomplete, inaccurate, or inappropriate for a given situation. This paper describes the design of a noise dosimeter capable of acquiring exposure data across tactical environments. Two generations of prototypes have been built at MIT Lincoln Laboratory with funding from the U.S. Army, Navy, and Marine Corps. Details related to hardware, signal processing, and testing efforts are provided, along with example tactical military noise data and lessons learned from early fieldings. Finally, we discuss the continued need to prioritize personalized dosimetry in order to improve models that predict or characterize the risk of auditory damage, to integrate dosimeters with hearing-protection devices, and to inform strategies and metrics for reducing NIHI.


Asunto(s)
Acústica/instrumentación , Monitoreo del Ambiente/instrumentación , Pérdida Auditiva Provocada por Ruido/prevención & control , Audición , Personal Militar , Ruido en el Ambiente de Trabajo/prevención & control , Enfermedades Profesionales/prevención & control , Exposición Profesional/prevención & control , Monitoreo del Ambiente/métodos , Diseño de Equipo , Femenino , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Humanos , Masculino , Ruido en el Ambiente de Trabajo/efectos adversos , Enfermedades Profesionales/diagnóstico , Enfermedades Profesionales/etiología , Enfermedades Profesionales/fisiopatología , Exposición Profesional/efectos adversos , Valor Predictivo de las Pruebas , Factores Protectores , Factores de Riesgo , Espectrografía del Sonido , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA