RESUMEN
BACKGROUND: The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells and sera were archived at approximately 1, 6, and 12 months after symptom onset. METHODS: We compared antibody responses (n = 85) and T-cell responses (n = 30) to nucleocapsid (N) and spike (S) glycoprotein over time across 4 age strata: 6 months to 5 years and 5-9, 10-14, and 15-20 years. RESULTS: N-specific antibody responses declined over time, becoming undetectable in 26 (81%) of 32 children by approximately 1 year postinfection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson r = .31, P = .008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children and, with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS: Our data reveal durable age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-antibody responses in comparison with declining antibody responses to N.
Asunto(s)
Anticuerpos Antivirales , Linfocitos T CD4-Positivos , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Niño , COVID-19/inmunología , SARS-CoV-2/inmunología , Preescolar , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Adolescente , Lactante , Glicoproteína de la Espiga del Coronavirus/inmunología , Femenino , Masculino , Linfocitos T CD4-Positivos/inmunología , Adulto Joven , Linfocitos T/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Cinética , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Fosfoproteínas/inmunologíaRESUMEN
BACKGROUND: Unusually high snowfall in western Washington State in February 2019 led to widespread school and workplace closures. We assessed the impact of social distancing caused by this extreme weather event on the transmission of respiratory viruses. METHODS: Residual specimens from patients evaluated for acute respiratory illness at hospitals in the Seattle metropolitan area were screened for a panel of respiratory viruses. Transmission models were fit to each virus to estimate the magnitude reduction in transmission due to weather-related disruptions. Changes in contact rates and care-seeking were informed by data on local traffic volumes and hospital visits. RESULTS: Disruption in contact patterns reduced effective contact rates during the intervention period by 16 to 95%, and cumulative disease incidence through the remainder of the season by 3 to 9%. Incidence reductions were greatest for viruses that were peaking when the disruption occurred and least for viruses in an early epidemic phase. CONCLUSION: High-intensity, short-duration social distancing measures may substantially reduce total incidence in a respiratory virus epidemic if implemented near the epidemic peak. For SARS-CoV-2, this suggests that, even when SARS-CoV-2 spread is out of control, implementing short-term disruptions can prevent COVID-19 deaths.
Asunto(s)
Epidemias/prevención & control , Distanciamiento Físico , Infecciones del Sistema Respiratorio/transmisión , Infecciones del Sistema Respiratorio/virología , Tiempo (Meteorología) , COVID-19 , Ciudades , Humanos , Incidencia , Modelos Teóricos , Estudios Retrospectivos , WashingtónRESUMEN
BACKGROUND: Previous investigations into clinical signs and symptoms associated with influenza types and subtypes have not definitively established differences in the clinical presentation or severity of influenza disease. METHODS: The study population included children 0 through 17 years old enrolled at 8 New Vaccine Surveillance Network sites between 2015 and 2020 who tested positive for influenza virus by molecular testing. Demographic and clinical data were collected for study participants via parent/guardian interview and medical chart review. Descriptive statistics were used to summarize demographic and clinical characteristics by influenza subtype. Multivariable logistic regression and Cox proportional hazard models were used to assess effects of age, sex, influenza subtype, and history of asthma on severity, including hospital admission, need for supplemental oxygen, and length of stay. RESULTS: Retractions, cyanosis, and need for supplemental oxygen were more frequently observed among patients with influenza A(H1N1)pdm09. Headaches and sore throat were more commonly reported among patients with influenza B. Children with influenza A(H1N1)pdm09 and children with asthma had significantly increased odds of hospital admission (adjusted odds ratio (AOR): 1.39, 95% CI: 1.14-1.69 and AOR: 2.14, 95% CI: 1.72-2.67, respectively). During admission, children with influenza A(H1N1)pdm09 had significantly increased use of supplemental oxygen compared to children with A(H3N2) (AOR: 0.60, 95% CI: 0.44-0.82) or B (AOR: 0.56, 95% CI: 0.41-0.76). CONCLUSIONS: Among children presenting to the emergency department and admitted to the hospital, influenza A(H1N1)pdm09 caused more severe disease compared to influenza A(H3N2) and influenza B. Asthma also contributed to severe influenza disease regardless of subtype.
RESUMEN
BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of hospitalization in US infants. Accurate estimates of severe RSV disease inform policy decisions for RSV prevention. METHODS: We conducted prospective surveillance for children <5 years old with acute respiratory illness from 2016 to 2020 at 7 pediatric hospitals. We interviewed parents, reviewed medical records, and tested midturbinate nasal ± throat swabs by reverse transcription polymerase chain reaction for RSV and other respiratory viruses. We describe characteristics of children hospitalized with RSV, risk factors for ICU admission, and estimate RSV-associated hospitalization rates. RESULTS: Among 13 524 acute respiratory illness inpatients <5 years old, 4243 (31.4%) were RSV-positive; 2751 (64.8%) of RSV-positive children had no underlying condition or history of prematurity. The average annual RSV-associated hospitalization rate was 4.0 (95% confidence interval [CI]: 3.8-4.1) per 1000 children <5 years, was highest among children 0 to 2 months old (23.8 [95% CI: 22.5-25.2] per 1000) and decreased with increasing age. Higher RSV-associated hospitalization rates were found in premature versus term children (rate ratio = 1.95 [95% CI: 1.76-2.11]). Risk factors for ICU admission among RSV-positive inpatients included: age 0 to 2 and 3 to 5 months (adjusted odds ratio [aOR] = 1.97 [95% CI: 1.54-2.52] and aOR = 1.56 [95% CI: 1.18-2.06], respectively, compared with 24-59 months), prematurity (aOR = 1.32 [95% CI: 1.08-1.60]) and comorbid conditions (aOR = 1.35 [95% CI: 1.10-1.66]). CONCLUSIONS: Younger infants and premature children experienced the highest rates of RSV-associated hospitalization and had increased risk of ICU admission. RSV prevention products are needed to reduce RSV-associated morbidity in young infants.
Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Niño , Lactante , Humanos , Recién Nacido , Preescolar , Estudios Prospectivos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/terapia , Hospitalización , Hospitales PediátricosRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody response that targets several viral proteins including spike (S) and nucleocapsid (N); S is the major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults following infection. Specifically, we examine neutralization and anti-N binding by sera collected up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of adults, including older adults, most of whom had mild infections that did not require hospitalization. Neutralizing antibody titers were lower in children than adults early after infection, but by 6 months titers were similar between age groups. The neutralizing activity of the children's sera decreased modestly from one to six months; a pattern that was not significantly different from that observed in adults. However, infection of children induced much lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased more rapidly in children than in adults, including older adults. These results highlight age-related differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are introduced, may provide comparator data for the longevity of infection-elicited and vaccination-induced neutralizing antibody responses.
RESUMEN
Background: Co-circulating respiratory pathogens can interfere with or promote each other, leading to important effects on disease epidemiology. Estimating the magnitude of pathogen-pathogen interactions from clinical specimens is challenging because sampling from symptomatic individuals can create biased estimates. Methods: We conducted an observational, cross-sectional study using samples collected by the Seattle Flu Study between 11 November 2018 and 20 August 2021. Samples that tested positive via RT-qPCR for at least one of 17 potential respiratory pathogens were included in this study. Semi-quantitative cycle threshold (Ct) values were used to measure pathogen load. Differences in pathogen load between monoinfected and coinfected samples were assessed using linear regression adjusting for age, season, and recruitment channel. Results: 21,686 samples were positive for at least one potential pathogen. Most prevalent were rhinovirus (33·5%), Streptococcus pneumoniae (SPn, 29·0%), SARS-CoV-2 (13.8%) and influenza A/H1N1 (9·6%). 140 potential pathogen pairs were included for analysis, and 56 (40%) pairs yielded significant Ct differences (p < 0.01) between monoinfected and co-infected samples. We observed no virus-virus pairs showing evidence of significant facilitating interactions, and found significant viral load decrease among 37 of 108 (34%) assessed pairs. Samples positive with SPn and a virus were consistently associated with increased SPn load. Conclusions: Viral load data can be used to overcome sampling bias in studies of pathogen-pathogen interactions. When applied to respiratory pathogens, we found evidence of viral-SPn facilitation and several examples of viral-viral interference. Multipathogen surveillance is a cost-efficient data collection approach, with added clinical and epidemiological informational value over single-pathogen testing, but requires careful analysis to mitigate selection bias.
RESUMEN
BACKGROUND: Alaska Native (AN) infants are at risk for severe disease due to respiratory syncytial virus (RSV) and influenza. Maternal immunization protects young infants through transplacental antibody transfer. RSV- and influenza-specific transplacental antibody transfer in mother-infant pairs has not previously been evaluated in the AN population. METHODS: Serum samples collected during pregnancy and at birth from AN mother-infant pairs in the Yukon-Kuskokwim Delta region (YKD) of Alaska (2000-2011; n = 75) and predominantly white pairs in Seattle, Washington (2014-2016; n = 57), were tested for RSV and influenza antibody using a microneutralization and hemagglutination inhibition assay, respectively, and compared between sites. RESULTS: Mean RSV antibody concentrations in pregnant women in YKD and Seattle were similar (log2 RSV antibody 10.6 vs 10.7, P = .86), but cord blood RSV antibody concentrations were significantly lower in infants born to mothers in YKD compared with Seattle (log2 RSV antibody 11.0 vs 12.2, P < .001). Maternal and cord blood influenza antibody concentrations were lower for women and infants in YKD compared with Seattle for all 4 influenza antigens tested (all P < .05). The mean cord to maternal RSV antibody transfer ratio was 1.15 (standard deviation [SD], 0.13) in mother-infant pairs in Seattle compared with 1.04 (SD, 0.08) in YKD. Mean cord blood to maternal antibody transfer ratios for influenza antigens ranged from 1.22 to 1.42 in Seattle and from 1.05 to 1.59 in YKD. CONCLUSIONS: Though the transplacental antibody transfer ratio was high (>1.0) for both groups, transfer ratios for RSV antibody were significantly lower in AN mother-infant pairs. Further studies are needed to elucidate the impact of lower transplacental antibody transfer on infant disease risk in rural Alaska.Alaska Native and continental US mother-infant pairs have high transplacental antibody transfer ratios (>1.0) for influenza and respiratory syncytial virus, but anti-respiratory syncytial virus antibody levels are significantly lower in Alaska Native pairs than in those from the continental US.
Asunto(s)
Orthomyxoviridae , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anticuerpos Antivirales , Femenino , Humanos , Lactante , Recién Nacido , Madres , EmbarazoRESUMEN
Importance: The association between COVID-19 symptoms and SARS-CoV-2 viral levels in children living in the community is not well understood. Objective: To characterize symptoms of pediatric COVID-19 in the community and analyze the association between symptoms and SARS-CoV-2 RNA levels, as approximated by cycle threshold (Ct) values, in children and adults. Design, Setting, and Participants: This cross-sectional study used a respiratory virus surveillance platform in persons of all ages to detect community COVID-19 cases from March 23 to November 9, 2020. A population-based convenience sample of children younger than 18 years and adults in King County, Washington, who enrolled online for home self-collection of upper respiratory samples for SARS-CoV-2 testing were included. Exposures: Detection of SARS-CoV-2 RNA by reverse transcription-polymerase chain reaction (RT-PCR) from participant-collected samples. Main Outcomes and Measures: RT-PCR-confirmed SARS-CoV-2 infection, with Ct values stratified by age and symptoms. Results: Among 555 SARS-CoV-2-positive participants (mean [SD] age, 33.7 [20.1] years; 320 were female [57.7%]), 47 of 123 children (38.2%) were asymptomatic compared with 31 of 432 adults (7.2%). When symptomatic, fewer symptoms were reported in children compared with adults (mean [SD], 1.6 [2.0] vs 4.5 [3.1]). Symptomatic individuals had lower Ct values (which corresponded to higher viral RNA levels) than asymptomatic individuals (adjusted estimate for children, -3.0; 95% CI, -5.5 to -0.6; P = .02; adjusted estimate for adults, -2.9; 95% CI, -5.2 to -0.6; P = .01). The difference in mean Ct values was neither statistically significant between symptomatic children and symptomatic adults (adjusted estimate, -0.7; 95% CI, -2.2 to 0.9; P = .41) nor between asymptomatic children and asymptomatic adults (adjusted estimate, -0.6; 95% CI, -4.0 to 2.8; P = .74). Conclusions and Relevance: In this community-based cross-sectional study, SARS-CoV-2 RNA levels, as determined by Ct values, were significantly higher in symptomatic individuals than in asymptomatic individuals and no significant age-related differences were found. Further research is needed to understand the role of SARS-CoV-2 RNA levels and viral transmission.
Asunto(s)
COVID-19/complicaciones , COVID-19/diagnóstico , ARN Viral/metabolismo , SARS-CoV-2/aislamiento & purificación , Carga Viral , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Prueba de Ácido Nucleico para COVID-19 , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Evaluación de Síntomas , Washingtón , Adulto JovenRESUMEN
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gravely affected societies around the world. Outbreaks in different parts of the globe have been shaped by repeated introductions of new viral lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State (USA) to characterize how the spread of SARS-CoV-2 in Washington State in early 2020 was shaped by differences in timing of mitigation strategies across counties and by repeated introductions of viral lineages into the state. In addition, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G but not the other variant (614D) into the state. At an individual level, we observed evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we did not find any evidence that the 614G variant affects clinical severity or patient outcomes. Overall, this suggests that with regard to D614G, the behavior of individuals has been more important in shaping the course of the pandemic in Washington State than this variant of the virus.
Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , COVID-19/virología , Brotes de Enfermedades , Humanos , Filogenia , SARS-CoV-2/genética , Washingtón/epidemiologíaRESUMEN
Children are strikingly underrepresented in COVID-19 case counts. In the United States, children represent 22% of the population but only 1.7% of confirmed SARS-CoV-2 cases as of April 2, 2020. One possibility is that symptom-based viral testing is less likely to identify infected children, since they often experience milder disease than adults. Here, to better assess the frequency of pediatric SARS-CoV-2 infection, we serologically screen 1,775 residual samples from Seattle Children's Hospital collected from 1,076 children seeking medical care during March and April of 2020. Only one child was seropositive in March, but seven were seropositive in April for a period seroprevalence of ≈1%. Most seropositive children (6/8) were not suspected of having had COVID-19. The sera of seropositive children have neutralizing activity, including one that neutralized at a dilution > 1:18,000. Therefore, an increasing number of children seeking medical care were infected by SARS-CoV-2 during the early Seattle outbreak despite few positive viral tests.
Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Visitas a Pacientes , Adolescente , COVID-19 , Prueba de COVID-19 , Niño , Preescolar , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Femenino , Hospitales , Humanos , Lactante , Recién Nacido , Masculino , Pandemias , Neumonía Viral/sangre , Neumonía Viral/epidemiología , Neumonía Viral/virología , Estudios Prospectivos , SARS-CoV-2 , Estudios Seroepidemiológicos , Pruebas Serológicas/métodos , Estados Unidos/epidemiologíaRESUMEN
Children are strikingly underrepresented in COVID-19 case counts1-3. In the United States, children represent 22% of the population but only 1.7% of confirmed SARS-CoV-2 cases1. One possibility is that symptom-based viral testing is less likely to identify infected children, since they often experience milder disease than adults1,4-7. To better assess the frequency of pediatric SARS-CoV-2 infection, we serologically screened 1,775 residual samples from Seattle Children's Hospital collected from 1,076 children seeking medical care during March and April of 2020. Only one child was seropositive in March, but seven were seropositive in April for a period seroprevalence of ≈ 1%. Most seropositive children (6/8) were not suspected of having had COVID-19. The sera of seropositive children had neutralizing activity, including one that neutralized at a dilution >1:18,000. Therefore, an increasing number of children seeking medical care were infected by SARS-CoV-2 during the early Seattle outbreak despite few positive viral tests.
RESUMEN
INTRODUCTION: Influenza epidemics and pandemics cause significant morbidity and mortality. An effective response to a potential pandemic requires the infrastructure to rapidly detect, characterise, and potentially contain new and emerging influenza strains at both an individual and population level. The objective of this study is to use data gathered simultaneously from community and hospital sites to develop a model of how influenza enters and spreads in a population. METHODS AND ANALYSIS: Starting in the 2018-2019 season, we have been enrolling individuals with acute respiratory illness from community sites throughout the Seattle metropolitan area, including clinics, childcare facilities, Seattle-Tacoma International Airport, workplaces, college campuses and homeless shelters. At these sites, we collect clinical data and mid-nasal swabs from individuals with at least two acute respiratory symptoms. Additionally, we collect residual nasal swabs and data from individuals who seek care for respiratory symptoms at four regional hospitals. Samples are tested using a multiplex molecular assay, and influenza whole genome sequencing is performed for samples with influenza detected. Geospatial mapping and computational modelling platforms are in development to characterise the regional spread of influenza and other respiratory pathogens. ETHICS AND DISSEMINATION: The study was approved by the University of Washington's Institutional Review Board (STUDY00006181). Results will be disseminated through talks at conferences, peer-reviewed publications and on the study website (www.seattleflu.org).
Asunto(s)
Gripe Humana , Genómica , Humanos , Gripe Humana/epidemiología , Prevalencia , Estudios Prospectivos , Estaciones del AñoRESUMEN
Previous reports of coronavirus disease 2019 among children in the United States have been based on health jurisdiction reporting. We performed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing on children enrolled in active, prospective, multicenter surveillance during January-March 2020. Among 3187 children, only 4 (0.1%) SARS-CoV-2-positive cases were identified March 20-31 despite evidence of rising community circulation.
Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Vigilancia en Salud Pública , Adolescente , COVID-19 , Prueba de COVID-19 , Niño , Preescolar , Técnicas de Laboratorio Clínico/métodos , Técnicas de Laboratorio Clínico/estadística & datos numéricos , Infecciones por Coronavirus/diagnóstico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Pandemias , Neumonía Viral/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Estados Unidos/epidemiologíaRESUMEN
After its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States. We find that most SARS-CoV-2 infections sampled during this time derive from a single introduction in late January or early February 2020, which subsequently spread locally before active community surveillance was implemented.
Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Genoma Viral , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Teorema de Bayes , COVID-19 , Humanos , Funciones de Verosimilitud , Pandemias , Filogenia , SARS-CoV-2 , Washingtón/epidemiologíaRESUMEN
Following its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread throughout the world. On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Genome sequencing of SARS-CoV-2 strains allows for the reconstruction of transmission history connecting these infections. Here, we analyze 346 SARS-CoV-2 genomes from samples collected between 20 February and 15 March 2020 from infected patients in Washington State, USA. We found that the large majority of SARS-CoV-2 infections sampled during this time frame appeared to have derived from a single introduction event into the state in late January or early February 2020 and subsequent local spread, strongly suggesting cryptic spread of COVID-19 during the months of January and February 2020, before active community surveillance was implemented. We estimate a common ancestor of this outbreak clade as occurring between 18 January and 9 February 2020. From genomic data, we estimate an exponential doubling between 2.4 and 5.1 days. These results highlight the need for large-scale community surveillance for SARS-CoV-2 introductions and spread and the power of pathogen genomics to inform epidemiological understanding.
RESUMEN
BACKGROUND: Infants born prematurely or with underlying conditions are at increased risk of severe rotavirus disease and associated complications. Given the theoretical risk of nosocomial transmission of vaccine-type rotavirus, rotavirus vaccination is recommended for infants at or after discharge from neonatal care settings. Because the first dose should be administered by 104 days of age, some infants may be age-ineligible for vaccination if delayed until discharge. METHODS: This prospective cohort included infants admitted to an urban academic medical center between birth and 104 days who received care in intensive care settings. Pentavalent human-bovine reassortant rotavirus vaccine (RV5) was used, per routine clinical care. Stool specimens were collected weekly (February 2013-April 2014) and analyzed for rotavirus strains using real-time reverse transcription-polymerase chain reaction. Demographic and vaccine data were collected. RV5 safety was not assessed. RESULTS: Of 385 study infants, 127 were age-eligible for routine vaccinations during hospitalization. At discharge, 32.7% were up-to-date for rotavirus vaccination, compared with 82.7% for other vaccinations. Of rotavirus-unvaccinated infants, 42.6% were discharged at age >104 days and thus vaccination-ineligible. Of 1192 stool specimens collected, rotavirus was detected in 13 (1.1%): 1 wild-type strain from an unvaccinated infant; 12 vaccine-type strains from 9 RV5-vaccinated infants. No vaccine-type rotavirus cases were observed among unvaccinated infants (incidence rate: 0.0 [95% confidence interval: 0.0-1.5] cases per 1000 patient days at risk). CONCLUSIONS: These data suggest that delaying rotavirus vaccination until discharge from the hospital could lead to missed vaccination opportunities and may be unnecessary in institutions using RV5 with comparable infection control standards.
Asunto(s)
Infección Hospitalaria/prevención & control , Recien Nacido Prematuro , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/administración & dosificación , Rotavirus/inmunología , Centros Médicos Académicos , Estudios de Cohortes , Infección Hospitalaria/epidemiología , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Alta del Paciente , Estudios Prospectivos , Medición de Riesgo , Rotavirus/aislamiento & purificación , Factores de Tiempo , Estados Unidos , Vacunación/normas , Vacunación/tendenciasRESUMEN
BACKGROUND: Rhinovirus is the most common cause of viral respiratory tract infections in children. Virologic predictors of lower respiratory tract infection (LRTI), such as viral load and the presence of another respiratory virus (coinfection), are not well characterized in pediatric outpatients. METHODS: Mid-nasal turbinate samples were collected from children presenting for care to the Seattle Children's Hospital emergency department (ED) or urgent care with a symptomatic respiratory infection between December 2011 and May 2013. A subset of samples was tested for rhinovirus viral load by real-time polymerase chain reaction. Clinical data were collected by chart reviews. Multivariate logistic regression was used to evaluate the relationship between viral load and coinfection and the risk for LRTI. RESULTS: Rhinovirus was the most frequent respiratory virus detected in children younger than 3 years. Of 445 patients with rhinovirus infection, 262 (58.9%) had LRTIs, 231 (51.9%) required hospital admission and 52 (22.5%) were hospitalized for 3 days or longer. Children with no comorbidities accounted for 142 (54%) of 262 rhinovirus LRTIs. Higher viral load was significantly associated with LRTI among illness episodes with rhinovirus alone (OR, 2.11; 95% confidence interval [CI], 1.24-3.58). Coinfection increased the risk of LRTI (OR, 1.83; 95% CI, 1.01-3.32). CONCLUSIONS: Rhinovirus was the most common pathogen detected among symptomatic young children in a pediatric ED who had respiratory viral testing performed, with the majority requiring hospitalization. Higher rhinovirus viral load and coinfection increased disease severity. Virologic data may assist clinical decision making for children with rhinovirus infections in the pediatric ED.
Asunto(s)
Coinfección/epidemiología , Infecciones por Picornaviridae/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Rhinovirus/aislamiento & purificación , Preescolar , Coinfección/virología , Comorbilidad , Femenino , Hospitalización , Hospitales Pediátricos , Humanos , Lactante , Recién Nacido , Masculino , Infecciones del Sistema Respiratorio/virología , Centros de Atención Terciaria , Carga ViralRESUMEN
BACKGROUND: Human rhinovirus (HRV) infections are highly prevalent, genetically diverse, and associated with both mild upper respiratory tract and more severe lower tract illnesses (LRTI). OBJECTIVE: To characterize the molecular epidemiology of HRV infections in young children seeking acute medical care. STUDY DESIGN: Nasal swabs collected from symptomatic children <3 years of age receiving care in the Emergency and Urgent Care Departments at Seattle Children's Hospital were analyzed by a rapid polymerase chain reaction (PCR) system (FilmArray(®)) for multiple viruses including HRV/enterovirus. HRV-positive results were confirmed by laboratory-developed real-time reverse transcription PCR (LD-PCR). Clinical data were collected by chart review. A subset of samples was selected for sequencing using the 5' noncoding region. Associations between LRTI and HRV species and genotypes were estimated using logistic regression analysis. RESULTS: Of 595 samples with HRV/enterovirus detected by FilmArray, 474 (80%) were confirmed as HRV by LD-PCR. 211 (96%) of 218 selected samples were sequenced; HRV species A, B, and C were identified in 133 (63%), 6 (3%), and 72 (34%), respectively. LRTI was more common in HRV-C than HRV-A illness episodes (adjusted OR [95% CI] 2.35[1.03-5.35). Specific HRV-A and HRV-C genotypes detected in multiple patients were associated with a greater proportion of LRTI episodes. In 18 patients with >1 HRV-positive illness episodes, a distinct genotype was detected in each. CONCLUSION: Diverse HRV genotypes circulated among symptomatic children during the study period. We found an association between HRV-C infections and LRTI in this patient population and evidence of association between specific HRV genotypes and LRTI.