Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant J ; 107(6): 1681-1696, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34231270

RESUMEN

Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.


Asunto(s)
Arachis/genética , Nicotiana/fisiología , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Animales , Ascomicetos/patogenicidad , Fenómenos Biomecánicos , Pared Celular/genética , Pared Celular/metabolismo , Ciclopentanos/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Células Vegetales/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/citología , Nicotiana/genética , Nicotiana/microbiología , Tylenchoidea/patogenicidad
2.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34182608

RESUMEN

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Humanos , Pandemias/prevención & control , SARS-CoV-2
3.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181810

RESUMEN

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Asunto(s)
Artemisia annua , Enfermedades Transmisibles , Preparaciones Farmacéuticas , Animales , Humanos , Agricultura Molecular , Plantas Comestibles
4.
Int Endod J ; 54(10): 1925-1936, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34164821

RESUMEN

AIM: To evaluate in vitro whether MTA Repair HP can induce repair processes at a distance, including its effects on biofilm, cell viability, migration, production of TGF-ß, phosphate and ALP, evaluated through MTA diluted extracts. METHODOLOGY: Initially, antibacterial tests were performed with the bacterium Streptococcus mutans (ATCC 25175) in the presence of MTA extracts (dilutions of 1:1, 1:2 and 1:4). Growth inhibition assay by microdilution in broth, antibiofilm plate assay of young biofilm and antibiofilm assay in confocal microscopy of mature biofilm were carried out. Then, pulp cells were stimulated in the presence of several MTA dilutions, and cell viability (MTT assay), proliferation and migration capacity (scratch assay) were evaluated. To evaluate the capacity of 1:1, 1:2 and 1:4 dilutions of MTA Repair HP to promote the production of important agents of odontogenic differentiation and mineralization, ALP activity, TGF-ß secretion and phosphate quantification were measured. Statistical differences were verified using one-way and two-way anova and Tukey's post-tests. RESULTS: The test dilutions of MTA Repair HP did not inhibit planktonic S. mutans growth but were able to reduce young and mature S. mutans biofilm (p < 0.001). In addition, none of the MTA Repair HP dilutions was cytotoxic for pulp cells. The 1:2 and 1:4 dilutions of MTA Repair HP induced migration and proliferation of pulp cells (p < 0.05). ALP activity and TGF-ß secretion were independent of the tested dilution (p < 0.001). Diluted 1:4 MTA Repair HP produced less phosphate than the more concentrated 1:1 and 1:2 MTA dilutions (p < 0.001). CONCLUSIONS: Undiluted MTA Repair HP reduced S. mutans biofilm, when compared to 1:2 and 1:4 MTA dilutions. Furthermore, none of the tested dilutions was cytotoxic to pulp cells. MTA Repair HP promoted cell migration and proliferation at a distance, assessed through the dilution of the MTA. Even from a distance, MTA Repair HP has the ability to participate in some events related to repair, such as migration, proliferation and TGF production.


Asunto(s)
Compuestos de Calcio , Materiales de Obturación del Conducto Radicular , Compuestos de Aluminio , Biopelículas , Compuestos de Calcio/farmacología , Células Cultivadas , Pulpa Dental , Combinación de Medicamentos , Ensayo de Materiales , Óxidos/farmacología , Silicatos/farmacología
5.
Mol Biol Rep ; 46(1): 97-103, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30367403

RESUMEN

Plants are becoming an interesting alternative system for the heterologous production of pharmaceutical proteins, providing a more scalable, cost-effective, and biologically safer option than the current expression systems. The development of plant virus expression vectors has allowed rapid and high-level transient expression of recombinant genes, and, in turn, provided an attractive plant-based production platform. Here we report the development of vectors based on the tobamovirus Pepper mild mottle virus (PMMoV) to be used in transient expression of foreign genes. In this PMMoV vector, a middle part of the viral coat protein gene was replaced by the green fluorescent protein (GFP) gene, and this recombinant genome was assembled in a binary vector suitable for plant agroinoculation. The accumulation of GFP was evaluated by observation of green fluorescent signals under UV light and by western blotting. Furthermore, by using this vector, the multiepitope gene for chikungunya virus was successfully expressed and confirmed by western blotting. This PMMoV-based vector represents an alternative system for a high-level production of heterologous protein in plants.


Asunto(s)
Vectores Genéticos/genética , Ingeniería de Proteínas/métodos , Tobamovirus/genética , Proteínas de la Cápside/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes Virales , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Virus de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Proteómica , Tobamovirus/metabolismo , Tobamovirus/fisiología
6.
Arch Virol ; 162(11): 3563-3566, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28940118

RESUMEN

The complete genome sequences of two novel small circular DNA viruses isolated from sweet-potato whiteflies collected in Central-West (AdDF) and Southeast (AdO) regions of Brazil were determined by Next Generation Sequencing (NGS), and confirmed by cloning and Sanger sequencing. The genomes are 2,199 and 2,211 nt-long, respectively, encoding a putative coat protein (CP) and a replication-associated protein (Rep) and showing a genomic organization typical of viruses from the family Genomoviridae. Phylogenetic analysis with deduced amino acid sequences of Rep indicates that the virus from AdO is closely related to other members of the genus Gemycircularvirus, while the virus from AdDF is related to those of the genus Gemyduguivirus. These new genomoviruses are tentatively named bemisia-associated genomovirus AdO and bemisia-associated genomovirus AdDF.

7.
Arch Virol ; 162(9): 2835-2838, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28567489

RESUMEN

The complete genome sequences of two novel small circular DNA viruses isolated from sweet-potato whiteflies collected in central-West (AdDF) and Southeast (AdO) regions of Brazil were determined by Next Generation Sequencing (NGS), and confirmed by cloning and Sanger sequencing. The genomes are 2,199 and 2,211 nt-long, respectively, encoding a putative coat protein (CP) and a replication-associated protein (Rep) and showing a genomic organization typical of viruses from the family Genomoviridae. Phylogenetic analysis with deduced amino acid sequences of Rep indicates that the virus from AdO is closely related to other members of the genus Gemycircularvirus, while the virus from AdDF is distantly related to other genomovirus. It was thus classified in a putative new genus, for which the name "Gemybolavirus" is proposed. These new genomoviruses are tentatively named "Bemisia associated gemybolavirus AdDF", and "Bemisia associated gemycircularvirus AdO".


Asunto(s)
Virus ADN/genética , Virus ADN/aislamiento & purificación , ADN Circular/genética , ADN de Cadena Simple/genética , Hemípteros/virología , Animales , Brasil , Genoma Viral , Interacciones Huésped-Patógeno , Filogenia
8.
Plant Biotechnol J ; 13(7): 884-92, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25572960

RESUMEN

There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 µg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Portadoras/biosíntesis , Glycine max/genética , Ingeniería de Proteínas , Semillas/genética , Fármacos Anti-VIH , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Semillas/metabolismo , Glycine max/metabolismo
9.
Arch Virol ; 158(12): 2603-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23812656

RESUMEN

A begomovirus infecting Orinoco jute (Corchorus hirtus) from Brazil was characterized. Molecular analysis revealed a bipartite genomic organization, which is typical of the New World begomoviruses. Sequence analysis and phylogenetic data showed that both genomic components have the closest relationship with abutilon mosaic Brazil virus, with an identity of 87.3 % for DNA-A, indicating that this virus is a member of a new begomovirus species for which the name "Corchorus mottle virus" (CoMoV) is proposed. Sida rhombifolia plants inoculated by biolistics with an infectious clone of CoMoV showed systemic vein chlorosis, mottling and leaf deformation symptoms, while Nicotiana benthamiana and tomato plants had symptomless infection. CoMoV is the first corchorus-infecting begomovirus reported in Brazil.


Asunto(s)
Begomovirus/genética , Begomovirus/aislamiento & purificación , Corchorus/virología , Virus ADN/genética , ADN Viral/química , ADN Viral/genética , Genoma Viral , Begomovirus/clasificación , Begomovirus/patogenicidad , Brasil , Análisis por Conglomerados , Virus ADN/aislamiento & purificación , Solanum lycopersicum/virología , Malvaceae/virología , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Nicotiana/virología
10.
Appl Microbiol Biotechnol ; 97(20): 9021-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23925532

RESUMEN

Binary vector-based transient expression of heterologous proteins in plants is a very attractive strategy due to the short time required for proceeding from planning to expression. However, this expression system is limited by comparatively lower yields due to strong post-transcriptional gene silencing (PTGS) in the host plants. The aim of this study was to optimize a procedure for expression of norovirus virus-like particles (VLPs) in plants using a binary vector with co-expression of a PTGS suppressor to increase the yield of the target protein. The effects of four plant viral PTGS suppressors on protein expression were evaluated using green fluorescent protein (GFP) as a reporter. Constructs for both GFP and PTGS suppressor genes were co-infiltrated in Nicotiana benthamiana plants, and the accumulation of GFP was evaluated. The most effective PTGS suppressor was the 126K protein of Pepper mild mottle virus. Therefore, this suppressor was selected as the norovirus capsid gene co-expression partner for subsequent studies. The construct containing the major (vp1) and minor capsid (vp2) genes with a 3'UTR produced a greater amount of protein than the construct with the major capsid gene alone. Thus, the vp1-vp2-3'UTR and 126K PTGS suppressor constructs were co-infiltrated at middle scale and VLPs were purified by sucrose gradient centrifugation. Proteins of the expected size, specific to the norovirus capsid antibody, were observed by Western blot. VLPs were observed by transmission electron microscopy. It was concluded that protein expression in a binary vector co-expressed with the 126K PTGS suppressor protein enabled superior expression and assembly of norovirus VLPs.


Asunto(s)
Nicotiana/genética , Nicotiana/virología , Virus Norwalk/fisiología , Interferencia de ARN , Ensamble de Virus , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Expresión Génica , Genes Supresores , Vectores Genéticos/genética , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Virus Norwalk/genética , Supresión Genética , Nicotiana/metabolismo
11.
Sci Rep ; 13(1): 9531, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308525

RESUMEN

Host Defense Peptides (HDPs) have, in previous studies, been demonstrating antimicrobial, anti-inflammatory, and immunomodulatory capacity, important factors in the repair process. Knowing these characteristics, this article aims to evaluate the potential of HDPs IDR1018 and DJK-6 associated with MTA extract in the repair process of human pulp cells. Antibacterial activity of HDPs, MTA and HDPs combined with MTA in Streptococcus mutans planktonic bacteria and antibiofilm activity was evaluated. Cell toxicity was assayed with MTT and cell morphology was observed by scanning electron microscopy (SEM). Proliferation and migration of pulp cells were evaluated by trypan blue and wound healing assay. Inflammatory and mineralization related genes were evaluated by qPCR (IL-6, TNFRSF, DSPP, TGF-ß). Alkaline phosphatase, phosphate quantification and alizarin red staining were also verified. The assays were performed in technical and biological triplicate (n = 9). Results were submitted for the calculation of the mean and standard deviation. Then, normality verification by Kolmogorov Smirnov test, analyzing one-way ANOVA. Analyses were considered at a 95% significance level, with a p-value < 0.05. Our study demonstrated that HDPs combined with MTA were able to reduce biofilms performed in 24 h and biofilm performed over 7 days S. mutans biofilm (p < 0.05). IDR1018 and MTA, as well as their combination, down-regulated IL-6 expression (p < 0.05). Tested materials were not cytotoxic to pulp cells. IDR1018 induced high cell proliferation and combined with MTA induced high cellular migration rates in 48 h (p < 0.05). Furthermore, the combination of IDR1018 and MTA also induced high expression levels of DSPP, ALP activity, and the production of calcification nodules. So, IDR-1018 and its combination with MTA could assist in pulp-dentine complex repair process in vitro.


Asunto(s)
Calcinosis , Pulpa Dental , Humanos , Interleucina-6 , Péptidos Catiónicos Antimicrobianos , Fosfatasa Alcalina , Análisis de Varianza
12.
Viruses ; 15(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36851624

RESUMEN

High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we identified the cucurbit aphid-borne yellows virus (CABYV, Polerovirus, Solemoviridae) in co-infection with cowpea aphid-borne mosaic virus (CABMV, Potyvirus, Potyviridae) in PF, in green manure, and spontaneous plants in several localities in Bahia. Complete genomes of CABYV-PF isolates were determined and analyzed with other CABYV isolates available in GenBank that have been identified in various countries. Phylogenetic analysis and pairwise identity comparison with CABYV isolates showed that CABYV-PFs are more closely related to French and Spanish isolates. Overall, analyses of all the CABYV genomes revealed that these could represent ten distinct species, and we thus proposed reclassifying these CABYV as isolates into ten species, tentatively named "Polerovirus curcubitaeprimum" to "Polerovirus curcubitaenonum", and "Polerovirus melo". CABYV-PF is a member of "Polerovirus curcubitaeprimum".


Asunto(s)
Luteoviridae , Passiflora , Brasil , Frutas , Filogenia , Luteoviridae/genética
13.
Transgenic Res ; 20(4): 841-55, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21069460

RESUMEN

The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a ß-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).


Asunto(s)
Factor IX/metabolismo , Glycine max/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Antígenos de Plantas/genética , Coagulación Sanguínea/efectos de los fármacos , Factor IX/genética , Factor IX/farmacología , Globulinas/genética , Humanos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Proteínas de Almacenamiento de Semillas/genética , Semillas/genética , Semillas/metabolismo , Proteínas de Soja/genética , Glycine max/genética
14.
Viruses ; 12(9)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942623

RESUMEN

The knowledge of genomic data of new plant viruses is increasing exponentially; however, some aspects of their biology, such as vectors and host range, remain mostly unknown. This information is crucial for the understanding of virus-plant interactions, control strategies, and mechanisms to prevent outbreaks. Typically, rhabdoviruses infect monocot and dicot plants and are vectored in nature by hemipteran sap-sucking insects, including aphids, leafhoppers, and planthoppers. However, several strains of a potentially whitefly-transmitted virus, papaya cytorhabdovirus, were recently described: (i) bean-associated cytorhabdovirus (BaCV) in Brazil, (ii) papaya virus E (PpVE) in Ecuador, and (iii) citrus-associated rhabdovirus (CiaRV) in China. Here, we examine the potential of the Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) to transmit BaCV, its morphological and cytopathological characteristics, and assess the incidence of BaCV across bean producing areas in Brazil. Our results show that BaCV is efficiently transmitted, in experimental conditions, by B. tabaci MEAM1 to bean cultivars, and with lower efficiency to cowpea and soybean. Moreover, we detected BaCV RNA in viruliferous whiteflies but we were unable to visualize viral particles or viroplasm in the whitefly tissues. BaCV could not be singly isolated for pathogenicity tests, identification of the induced symptoms, and the transmission assay. BaCV was detected in five out of the seven states in Brazil included in our study, suggesting that it is widely distributed throughout bean producing areas in the country. This is the first report of a whitefly-transmitted rhabdovirus.


Asunto(s)
Hemípteros/virología , Enfermedades de las Plantas/virología , Infecciones por Rhabdoviridae/transmisión , Infecciones por Rhabdoviridae/virología , Rhabdoviridae/aislamiento & purificación , Animales , Evolución Biológica , Brasil , Carica/virología , China , Ecuador , Genómica , Medio Oriente , Hojas de la Planta/virología , Virus de Plantas , Plantas/virología , Rhabdoviridae/clasificación , Rhabdoviridae/genética , Análisis de Secuencia
15.
Commun Biol ; 3(1): 255, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444777

RESUMEN

Recently, new serine integrases have been identified, increasing the possibility of scaling up genomic modulation tools. Here, we describe the use of unidirectional genetic switches to evaluate the functionality of six serine integrases in different eukaryotic systems: the HEK 293T cell lineage, bovine fibroblasts and plant protoplasts. Moreover, integrase activity was also tested in human cell types of therapeutic interest: peripheral blood mononuclear cells (PBMCs), neural stem cells (NSCs) and undifferentiated embryonic stem (ES) cells. The switches were composed of plasmids designed to flip two different genetic parts driven by serine integrases. Cell-based assays were evaluated by measurement of EGFP fluorescence and by molecular analysis of attL/attR sites formation after integrase functionality. Our results demonstrate that all the integrases were capable of inverting the targeted DNA sequences, exhibiting distinct performances based on the cell type or the switchable genetic sequence. These results should support the development of tunable genetic circuits to regulate eukaryotic gene expression.


Asunto(s)
Arabidopsis/enzimología , Fibroblastos/enzimología , Integrasas/genética , Plásmidos/genética , Protoplastos/enzimología , Recombinación Genética , Serina/genética , Animales , Bovinos , Humanos , Integrasas/metabolismo , Leucocitos Mononucleares/enzimología , Regiones Promotoras Genéticas , Serina/metabolismo
16.
Anal Biochem ; 392(1): 8-11, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19457429

RESUMEN

The main use of green fluorescent protein (GFP) is as a reporter system, where the existence of the protein is usually determined visually using fluorescent microscopy. Although fluorescence-based quantification of GFP is possible, background fluorescence in plants and in plant extracts was observed by our group. Another phenomenon we observed that makes quantification difficult is the increased level of GFP fluorescence in Nicotiana benthamiana leaf extracts, probably the result of dimerization of GFP molecules promoted by interaction with some component(s) of tobacco extracts. In the current work, the background fluorescence was minimized and the enhancement of GFP fluorescence in tobacco extracts was eliminated with the addition of urea to the measured solution so that a simple quantification assay for the GFP in the tobacco extracts could be established.


Asunto(s)
Fluorometría/métodos , Proteínas Fluorescentes Verdes/análisis , Nicotiana/química , Extractos Vegetales/química , Hojas de la Planta/química
17.
Viruses ; 11(8)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382446

RESUMEN

Capybaras (Hydrochoerus hydrochaeris), the world's largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This study aimed to expand the knowledge on the viral diversity associated with capybaras by sampling their faeces. Using a viral metagenomics approach, we identified diverse single-stranded DNA viruses in the capybara faeces sampled in the Distrito Federal, Brazil. A total of 148 complete genomes of viruses in the Microviridae family were identified. In addition, 14 genomoviruses (family Genomoviridae), a novel cyclovirus (family Circoviridae), and a smacovirus (family Smacoviridae) were identified. Also, 37 diverse viruses that cannot be assigned to known families and more broadly referred to as unclassified circular replication associated protein encoding single-stranded (CRESS) DNA viruses were identified. This study provides a snapshot of the viral diversity associated with capybaras that may be infectious to these animals or associated with their microbiota or diet.


Asunto(s)
Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Heces/virología , Roedores/virología , Animales , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Brasil , Virus ADN/genética , ADN de Cadena Simple , ADN Viral/genética , Genoma Viral/genética , Metagenómica , Filogenia , Análisis de Secuencia de ADN
18.
Viruses ; 11(1)2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30669683

RESUMEN

Using double-strand RNA (dsRNA) high-throughput sequencing, we identified five RNA viruses in a bean golden mosaic virus (BGMV)-resistant common bean transgenic line with symptoms of viral infection. Four of the identified viruses had already been described as infecting common bean (cowpea mild mottle virus, bean rugose mosaic virus, Phaseolus vulgaris alphaendornavirus 1, and Phaseolus vulgaris alphaendornavirus 2) and one is a putative new plant rhabdovirus (genus Cytorhabdovirus), tentatively named bean-associated cytorhabdovirus (BaCV). The BaCV genome presented all five open reading frames (ORFs) found in most rhabdoviruses: nucleoprotein (N) (ORF1) (451 amino acids, aa), phosphoprotein (P) (ORF2) (445 aa), matrix (M) (ORF4) (287 aa), glycoprotein (G) (ORF5) (520 aa), and an RNA-dependent RNA polymerase (L) (ORF6) (114 aa), as well as a putative movement protein (P3) (ORF3) (189 aa) and the hypothetical small protein P4. The predicted BaCV proteins were compared to homologous proteins from the closest cytorhabdoviruses, and a low level of sequence identity (15⁻39%) was observed. The phylogenetic analysis shows that BaCV clustered with yerba mate chlorosis-associated virus (YmCaV) and rice stripe mosaic virus (RSMV). Overall, our results provide strong evidence that BaCV is indeed a new virus species in the genus Cytorhabdovirus (family Rhabdoviridae), the first rhabdovirus to be identified infecting common bean.


Asunto(s)
Begomovirus/fisiología , Phaseolus/virología , Enfermedades de las Plantas/virología , Virus ARN/aislamiento & purificación , ARN Bicatenario/genética , Rhabdoviridae/aislamiento & purificación , Resistencia a la Enfermedad , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/virología , Plantas Modificadas Genéticamente/virología , Virus ARN/clasificación , ARN Viral/genética , Rhabdoviridae/clasificación , Análisis de Secuencia de ADN , Proteínas Virales/genética
19.
Viruses ; 10(4)2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29614801

RESUMEN

Brazil is one of the major passion fruit producers worldwide. Viral diseases are among the most important constraints for passion fruit production. Here we identify and characterize a new passion fruit infecting-virus belonging to the family Geminiviridae: passion fruit chlorotic mottle virus (PCMoV). PCMoV is a divergent geminivirus unlike previously characterized passion fruit-infecting geminiviruses that belonged to the genus Begomovirus. Among the presently known geminiviruses, it is most closely related to, and shares ~62% genome-wide identity with citrus chlorotic dwarf associated virus (CCDaV) and camelia chlorotic dwarf associated virus (CaCDaV). The 3743 nt PCMoV genome encodes a capsid protein (CP) and replication-associated protein (Rep) that respectively share 56 and 60% amino acid identity with those encoded by CaCDaV. The CPs of PCMoV, CCDaV, and CaCDaV cluster with those of begomovirus whereas their Reps with those of becurtoviruses. Hence, these viruses likely represent a lineage of recombinant begomo-like and becurto-like ancestral viruses. Furthermore, PCMoV, CCDaV, and CaCDaV genomes are ~12-30% larger than monopartite geminiviruses and this is primarily due to the encoded movement protein (MP; 891-921 nt) and this MP is most closely related to that encoded by the DNA-B component of bipartite begomoviruses. Hence, PCMoV, CCDaV, and CaCDaV lineage of viruses may represent molecules in an intermediary step in the evolution of bipartite begomoviruses (~5.3 kb) from monopartite geminiviruses (~2.7-3 kb). An infectious clone of PCMoV systemically infected Nicotiana benthamina, Arabidopsis thaliana, and Passiflora edulis.


Asunto(s)
Begomovirus/clasificación , Begomovirus/genética , Passiflora/virología , Brasil , Biología Computacional/métodos , Geminiviridae/clasificación , Geminiviridae/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN
20.
Virus Res ; 129(2): 80-6, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17698236

RESUMEN

Chicken anemia virus (CAV) is an important pathogen of chicken worldwide, causing severe anemia and immunodeficiency. Its small single-stranded DNA genome (2.3kb) encodes three proteins: VP1, the only structural protein, VP2, a protein phosphatase, and VP3, also known as apoptin, which induces apoptosis. In this study, CAV proteins were expressed in plants as an alternative for recombinant protein production in animal cells. Additionally, the effect of VP3 expression was tested to evaluate possible involvement in programmed cell death in plants. The CAV genes were cloned in binary vectors with the Green fluorescent protein (GFP) as N terminal fusion, and into a Potato virus X (PVX) and Tobacco Mosaic Virus (TMV)-based vectors. Nicotiana benthamiana plants were inoculated with Agrobacterium tumefaciens containing the binary vector constructs or the PVX and TMV constructs. Upon transient expression GFP:VP1 and GFP:VP2 were observed throughout the nucleoplasm, whereas VP3 formed compact aggregates within the nucleus, indicating functional nuclear localization signals in all three proteins. An intense fluorescence was observed for VP2 and VP3 fusions, whereas GFP:VP1 fluorescence remained faint and was only detected in a limited number of cells. Co-expression of GFP:VP1 and VP2 had a marked alteration on the distribution of GFP:VP1, forming large VP1 aggregates throughout the nucleus, indicating an interaction of the two CAV proteins. No visible alteration on GFP pattern was detected upon co-expression of GFP:VP1 and VP3, or with GFP:VP2 and VP3. Plants infected with PVX or TMV-based vectors expressing VP3 displayed strong necrosis and wilting, however, a direct association with VP3 expression and programmed cell death in plants, could not be established. Overall, our results show that all CAV proteins can be expressed in plant cells, though expression level of VP1 needs to be further optimized before testing its potential as (edible) subunit vaccine.


Asunto(s)
Virus de la Anemia del Pollo/genética , Nicotiana/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Virales/biosíntesis , Animales , Muerte Celular , Vectores Genéticos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Nicotiana/citología , Nicotiana/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA