Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29439966

RESUMEN

The antifungal effects of the novel triazole PC1244, designed for topical or inhaled administration, against Aspergillus fumigatus were tested in a range of in vitro and in vivo studies. PC1244 demonstrated potent antifungal activities against clinical A. fumigatus isolates (n = 96) with a MIC range of 0.016 to 0.25 µg/ml, whereas the MIC range for voriconazole was 0.25 to 0.5 µg/ml. PC1244 was a strong tight-binding inhibitor of recombinant A. fumigatus CYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis in A. fumigatus with a 50% inhibitory concentration of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC range, <0.0078 to 2 µg/ml), especially Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae PC1244 also proved to be quickly absorbed into both A. fumigatus hyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (minimum fungicidal concentration, 2 µg/ml) which indicated that it was 8-fold more potent than voriconazole. In vivo, once-daily intranasal administration of PC1244 (3.2 to 80 µg/ml) to temporarily neutropenic, immunocompromised mice 24 h after inoculation with itraconazole-susceptible A. fumigatus substantially reduced the fungal load in the lung, the galactomannan concentration in serum, and circulating inflammatory cytokine levels. Furthermore, 7 days of extended prophylaxis with PC1244 showed in vivo effects superior to those of 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment of A. fumigatus infection in the lungs of humans.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Triazoles/farmacología , Administración Intranasal , Animales , Aspergillus fumigatus/aislamiento & purificación , Candida/efectos de los fármacos , Cryptococcus/efectos de los fármacos , Citocinas/sangre , Farmacorresistencia Fúngica , Células Epiteliales/metabolismo , Ergosterol/biosíntesis , Proteínas Fúngicas/antagonistas & inhibidores , Galactosa/análogos & derivados , Humanos , Hifa/metabolismo , Mananos/sangre , Ratones , Pruebas de Sensibilidad Microbiana , Rhizopus/efectos de los fármacos , Trichophyton/efectos de los fármacos , Voriconazol/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-28223388

RESUMEN

The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 µM and 0.22 µM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 µg/ml, while those of voriconazole ranged from 0.064 to 4 µg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 µg/ml, whereas voriconazole (0.019 to >1 µg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 µg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 µg/mouse, while posaconazole showed similar effects (44%) at 14 µg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Benzamidas/farmacología , Proteínas Fúngicas/antagonistas & inhibidores , Triazoles/farmacología , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/aislamiento & purificación , Células Cultivadas , Sistema Enzimático del Citocromo P-450 , Humanos , Itraconazol/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Voriconazol/farmacología
3.
ACS Med Chem Lett ; 12(4): 579-584, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859798

RESUMEN

Some marketed antibiotics can cause mitochondria dysfunction via inhibition of the mitochondrial translation process. There is great interest in exploiting such effects within a cancer setting. To enhance accumulation of antibiotics within the mitochondria of cancer cells, and therefore delivery of a greater potency payload, a mitochondrial targeting group in the form of a triphenylphosphonium (TPP) cation was appended via an alkyl chain length consisting of 7 to 11 carbons to the ribosomal antibiotics azithromycin and doxycycline. Using MDA-MB-231 cells, the effects of each subseries on mitochondrial translation, mitochondrial bioenergetics, and cell viability are described.

4.
J Am Chem Soc ; 125(25): 7490-1, 2003 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12812469

RESUMEN

The evaluation of a racemic catalyst was investigated in the case of oxazaborolidine (OAB)-catalyzed borane reduction of 1,5-diphenyl-1,5-pentanedione, giving the corresponding diol. On the basis of the diastereoselectivity of the diols, it is possible to estimate the enantioselectivity (ee) of the first step, which correlates well with the ee in the reaction of the structurally similar phenyl n-pentyl ketone with enantiopure OAB catalyst. The measure of diastereoselectivity could be a tool for screening racemic catalysts without the need for resolving the individual enantiomers, if in the second step of the process there is no substrate control and no catalyst scrambling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA